

ERJUN ZHANG

PhD | Biomedical Engineering | University of Montreal (PolyMTL)

✉ erjun.zhang@etud.polymtl.ca Alt : erjunzhang@outlook.com | Website | Google Scholar | Github

Focus Areas : Diffusion MRI; microstructure modeling; multimodal imaging; pathology-specific biomarkers; brain development and injury; machine learning; neonatal brain segmentation, registration, and atlas building

EDUCATION	PHD IN BIOMEDICAL ENGINEERING (NEONATAL BRAIN & DIFFUSION MRI)	October 2025
	- Institute of Biomedical Engineering, University of Montreal (PolyMTL), Canada	
	- <u>PhD Thesis</u> : DBM : A Spectrum-Based Diffusion MRI Framework for Neonatal Brain Segmentation, Developmental Assessment, and Injury Characterization	
	- <u>Supervisors</u> : Professor Benjamin De Leener & Professor Gregory Lodygensky	
RESEARCH EXPERIENCE	M.ENG IN OPTICAL ENGINEERING (SUPER-RESOLUTION MICROSCOPY)	July 2018
	- Institute of Laser Engineering, Beijing University of Technology, China	
	- <u>Master Thesis</u> : Numerical Simulation and Image Reconstruction for Structured Illumination Super-Resolution Fluorescence Microscopy	
	- <u>Supervisor</u> : Professor Jian Wu	
RESEARCH EXPERIENCE	B.ENG IN OPTOELECTRONIC INFORMATION ENGINEERING	June 2014
	- School of Optoelectronic Engineering, Shenzhen University, China	
	- Information optics ; Digital image Processing ; Computational imaging ; Image analysis	
	NEONATAL BRAIN DIFFUSION MRI	Sep 2019-Oct 2025
RESEARCH EXPERIENCE	- Neuropoly Lab (lab director : Julien Cohen-Adad, Canada research chair in quantitative MRI)	
	- <u>Developed a novel dMRI model</u> (published in NeuroImage) that can be used for neonatal clinical brain imaging	
	- <u>Found two subtypes</u> of neonatal brain punctate white matter lesion	
	- <u>Built end-to-end dMRI-based framework</u> for neonatal brain recon., segmentation and analysis	
RESEARCH EXPERIENCE	- <u>Established a neonatal brain MRI cohort (N=88)</u> with structural and diffusion MRI protocols	
	PRETERM BRAIN STRUCTURE AND LESION SEGMENTATION	Nov 2023-Oct 2025
	- TransMedTech Institute, CHU Sainte-Justine hospital research center, Montreal, Canada	
RESEARCH EXPERIENCE	- <u>Developed an automated segmentation pipeline</u> for punctate white matter lesions in clinical-grade, low-SNR MRI ;	
	- <u>Solve problem of fine tissue segmentation</u> when lacking structural MRI	
	MOUSE BRAIN MRI PROCESSING AND ANALYSIS PIPELINE DESIGN	Nov 2025-Feb 2026
	- CHU Sainte-Justine hospital research center, Montreal, Canada	
RESEARCH EXPERIENCE	- Developed an end-to-end preprocessing and analysis pipeline (T1w, T2w, diffusion MRI), including skull stripping, registration, atlas building, and subject-wise brain segmentation with quality control for large-size mouse MRI datasets	
	- Performed ROI-based quantitative analyses to extract imaging biomarkers of small-animal brain disease models	
	COMPUTATIONAL MODELS OF RADIATION PHYSICS (DOCTORAL RESEARCH)	Sep 2018-Aug 2019
	- Lab of Professor Maksim Skorobogatiy (Canada Research Chair Tier I; APS/Optica/SPIE Fellow) at Polytechnique Montreal, Montreal, Canada	
RESEARCH EXPERIENCE	- Built physics-based theoretical models of energy transfer from the Sun to room window ; first-author publication (Applied Optics, 2020).	
	OPTICAL IMAGING AND COMPUTATIONAL RECONSTRUCTION (M.Sc.)	Sep 2015-Aug 2018
	- Beijing University of Technology, Beijing, China	
	- Developed numerical simulations and image reconstruction methods for structured illumination super-resolution microscopy (2 patterns).	

AWARD & COMPETITIVE FUNDING	QBIN MENTORSHIP GRANT ($\times 2$), QBIN/FRQS	July 2023 & 2024
	UNIVERSITY OF MONTREAL & CHINA SCHOLARSHIP COUNCIL JOINED SCHOLARSHIP	2020-2023
	ACADEMIC INNOVATION AWARD, BEIJING UNIVERSITY OF TECHNOLOGY ($\times 2$)	2017 & 2018
	ACADEMIC EXCELLENCE AWARD, BEIJING UNIVERSITY OF TECHNOLOGY	2015-2016
SKILLS	LANGUAGE	
	- English (professional proficiency), Chinese (native), French (elementary proficiency)	
CODING		
	- Python (advanced) : developed frameworks for MRI data processing, recon. and analysis	
	- Matlab (advanced) : developed image super-resolution recon. and processing pipeline	
	- Latex (advanced) : completed a 200-page advanced mathematic book, and a 180-page biomedical doctoral thesis	
	- Deep learning (advanced) : UNet-style segmentation ; training/inference workflows	
TEACHING & MENTORING EXPERIENCE	INTROD. TO PYTHON-BASED MRI DATA ANALYSIS: PART III (MENTOR, DAWSON)	Summer 2025
	- Segmentation-guided, two abstracts (student as 1st author) were submitted to conferences	
	- Students : Hoi Ching Wat & Keiara Baker (McGill), Feodor Gornostayev (Dawson)	
	INTROD. TO PYTHON-BASED MRI DATA ANALYSIS: PART II (MENTOR, QBIN)	Summer 2024
	- Injury-guided, two abstracts (student as 1st author)	
	- Students : Hanna Ton That (Waterloo), Josephine Emadoye (McGill), Kylie Xu (UdeM)	
	INTROD. TO PYTHON-BASED MRI DATA ANALYSIS: PART I (MENTOR, QBIN)	Summer 2023
	- Development-guided, one abstracts (student as 1st author), best presentation, best student	
	- Students : Kylie Xu (UdeM), Sara Hernandez (Waterloo)	
	AI FOR NEURO (TEACHING ASSISTANT, MAIN)	Dec 2022
ADVANCED METHODS TRAINING	MEDICSS : UCL MEDICAL IMAGE COMPUTING (MEDICSS)	July 2021 & 2020
	NEUROMATCH ACADEMY : DEEP LEARNING FOR NEUROSCIENCE	Summer 2024 & 2022
	BRAINHACK 2020 : PROJECT FOR NEURAL DATA SCIENCE	Summer 2020
	MAIN 2019 : MONTRÉAL AI AND NEUROSCIENCE	Winter 2019
SELECTED JOURNAL ARTICLES	[1] Diffusion Bubble Model: A novel MRI approach for detection and subtyping of neonatal punctate white matter lesions <i>Neuroimage</i> 2025, 317 : 121324 <u>Erjun Zhang</u> , Benjamin De Leener and Gregory Lodygensky	
	[2] Severe central nervous system demyelination in Sanfilippo disease <i>Front. Mol. Neurosci.</i> 2023, 16 : 1323449 (contribution : MRI data acquisition, preprocessing, and quantitative analysis) Mahsa Taherzadeh, <u>Erjun Zhang</u> , Irene Londono, Benjamin De Leener, Sophie Wang, Jonathan Cooper, Timothy Kennedy, Carlos Morales, Zesheng Chen, Gregory Lodygensky, and Alexey Pshezhetsky	
	[3] Non-invasive in vivo MRI detects long-term microstructural brain alterations related to learning and memory impairments in a white matter injury <i>Behav. Brain Res.</i> 2022, 428 : 113884 Wyston Pierre, <u>Erjun Zhang</u> , Irene Londono, Benjamin De Leener, Frédéric Lesage, Gregory Lodygensky	
	[4] Synthetic analogue of adrenocorticotropic hormone, ACTH(4-7)PGP delays neurological manifestations in diseases of mucopolysaccharidosis III spectrum by reducing neuroinflammation and rescuing neurotransmission, and axonal demyelination <i>Science Advances</i> 2025 (contribution : MRI data acquisition, preprocessing, and quantitative analysis), [under review] Travis Moore, Patricia Dubot, Gustavo Viana, Poulohee Bose, <u>Erjun Zhang</u> , Behzad Nasseri, Xuefang Pan, Derek Robertson, ... Jannic Boehm, Gregory Lodygensky, Jill Wood and Alexey Pshezhetsky	
	[5] Improving thermo-optic properties of smart windows via coupling to radiative coolers <i>Appl. Opt.</i> 2020, 59-13 : D210-D220 (Optical engineering ; prior to PhD) <u>Erjun Zhang</u> , Yang Cao, Christoph Caloz and Maksim Skorobogatiy	

MANUSCRIPTS IN PREPARATION

- [1] Preterm brains at term-equivalent age : volumes comparable, microstructure delayed on diffusion MRI 2026, [\[writing in progress\]](#)
Erjun Zhang, Benjamin De Leener and Gregory Lodygensky
- [2] Enhancing Neonatal Brain Tissue Segmentation through UNet-Based Deep Learning on Diffusion MRI Data 2026, [\[writing in progress\]](#)
Erjun Zhang, Benjamin De Leener and Gregory Lodygensky

INVITED TALK

- [1] A Novel Diffusion MRI Framework for Neonatal Brain Segmentation, Developmental Assessment, and Injury Characterization *Fetal-Neonatal Neuroimaging Developmental Science Center (FNNDSC LECTURE SERIES)*, *Boston Children's Hospital, Harvard Medical School* Scheduled on March 11, 2026, Boston, MA, USA [\(Invited by Dr. Ellen Grant, Harvard Medical School\)](#)
Erjun Zhang

SELECTED CONFERENCE PRESENTATIONS

- [1] [Diffusion Bubble Model: A Novel Method For Detecting Neuroinflammation in Mouse Brain With Sanfilippo Syndrome](#) *ISMRM 2023*, Late-Breaking Abstract (oral), Toronto, Canada
Erjun Zhang, Irene Londono, Jérémie Fouquet, Alexey Pshezhetsky, Benjamin De Leener, and Gregory Lodygensky
- [2] [Impacts of Prematurity on Neonatal Deep Gray Matter Using DBSI OHBM 2023](#), Montreal, Canada
Erjun Zhang, Londono I, Paquette N, ..., DeLeener B, Lodygensky G
- [3] [Evaluation Of Neonatal Brain White Matter Development Using Diffusion Basis Spectrum Imaging Pediatric Academic Societies \(PAS\) Meeting 2023](#), Washington D.C., USA
Erjun Zhang, Benjamin De Leener and Gregory Lodygensky
- [4] [T1w/T2w Ratio Improves Detection of Neonatal Punctate White Matter Lesions CNPRM / DO-HaD / ENRICH / CAMCCO 2025](#), Toronto, Canada
Erjun Zhang, Josephine Emadoye, Kylie X, Hanna Ton That, Benjamin De Leener, Gregory Lodygensky
- [5] [Major White Matter and Hippocampal Alterations in a Mouse Model of Sanfilippo Syndrome at 7T MRI OHBM 2023](#), Montreal, Canada
Erjun Zhang, Taherzadeh M, Londono I, Fouquet J, DeLeener B, Pshezhetsky A, Lodygensky G

BOOKS

- [1] Linear Algebra *BDIC* 2017, BDIC1014J & BDIC1022J
Xin Liu and Erjun Zhang
- [2] Supplemental reading book for Advanced Mathematics *BDIC* 2019, BDIC1031J & BDIC1027J
Hao Zhu, and Erjun Zhang and Xin Liu

PATENTS

- [1] A design of structure light generating device using for super resolution microscopy 2018, CN108227174A, Jian Wu (supervisor) and Erjun Zhang
- [2] A super-resolution microscope imaging method and structure light generating device 2018, CN108333160A, Jian Wu (supervisor), Erjun Zhang and Zhaowen Chen