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 A B S T R A C T

Diffusion magnetic resonance imaging, particularly diffusion tensor imaging (DTI), is an indispensable non-
invasive tool for visualizing brain structure and detecting injuries by tracking water molecule motion. However, 
DTI may overlook subtle microstructural alterations due to its oversimplified model. In this study, we 
introduced the Diffusion Bubble Model (DBM),  a spectrum-based framework that decomposes each voxel’s 
signal into a continuum of isotropic ‘‘bubbles’’ after the anisotropic tensor adjustment, thereby capturing a 
spectrum with continuous range of restriction levels. From the resulting isotropic-diffusion spectrum we derive 
metrics representing the spectrum and free-water of the tissue voxel. We applied DBM to diffusion data from 
20 infants with punctate white-matter lesions (PWMLs) in the optic radiation and compared lesion regions 
with contralateral regions as well as matched controls.  DBM segregated the lesions into two phenotypes that 
DTI could not differentiate: wet-type (𝑁 = 10), showing up to +155.0% elevated free water versus control 
(+125.1% vs. contralateral), and dry-type (𝑁 = 10), with −68.4% less free water compared to contralateral 
and no difference versus controls. Notably, wet-type lesions exhibited stronger slow-diffusion shifts on DBM 
(−37.6% in the 1∕4 area line, −52.7% in left FWHM) than changes in mean diffusivity (−30.3%) from DTI. These 
findings suggest that DBM can reveal microstructural heterogeneity invisible to conventional DTI, offering a 
promising tool for refined characterization and monitoring of neonatal brain injury.
1. Introduction

Magnetic Resonance Imaging (MRI), developed in the 1970s, has 
become an indispensable, non-invasive tool for visualizing brain struc-
ture, monitoring development, and detecting injury (Lerch et al., 2017; 
Dubois et al., 2021; Alexander et al., 2007). Among various MRI 
techniques, diffusion MRI (dMRI), introduced in the 1980s, has gained 
prominence for its ability to probe tissue homeostasis and microstruc-
ture by sensitizing the signal to the motion of water molecules (Mer-
boldt et al., 1985; Pierpaoli et al., 1996). By providing insights into 
the cellular milieu, dMRI offers valuable information for both clinical 
applications and neuroscientific research (Jelescu and Budde, 2017; 
Merboldt et al., 1985; Pierpaoli et al., 1996; Le Bihan et al., 2001).
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Diffusion Tensor Imaging (DTI), a simple yet foundational dMRI 
model, represents water diffusion as a 3D ellipsoid tensor and allows 
for the characterization of brain microstructure (Jelescu and Budde, 
2017). DTI-derived metrics capture distinct aspects of this diffusion: 
axial diffusivity (AD) quantifies diffusion along dominant fiber orienta-
tions; radial diffusivity (RD) measures diffusion perpendicular to these 
orientations; mean diffusivity (MD) reflects the overall magnitude of 
water diffusion; and fractional anisotropy (FA) captures the directional 
preference of the diffusion (Le Bihan et al., 2001; Alexander et al., 
2007; Pavaine et al., 2016; Kersbergen et al., 2014). Changes in these 
metrics can indicate underlying microstructural alterations, such as 
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demyelination (elevated RD) and axonal damage (reduced AD) (Win-
klewski et al., 2018; Sun et al., 2006; Song et al., 2002; Alexander et al., 
2007).

Despite its simplicity and widespread use, DTI has notable limita-
tions. Its single-tensor model cannot fully capture the complexity of the 
tissue microstructure within each voxel, and it only provides averaged 
diffusion information (Lerch et al., 2017; Jelescu et al., 2020). This 
shortcoming becomes particularly evident in conditions with mixed 
pathology, where multiple compartments (e.g., demyelinated axons, 
inflammatory cells, altered extracellular space) or axon bundles with 
different orientations contribute to the diffusion signal (Cross and 
Song, 2017; DiPiero et al., 2022). The partial volume effect and other 
confounding factors may further obscure subtle changes, making it 
challenging to pinpoint the underlying pathology (Jeon et al., 2018; 
Henf et al., 2018).

To overcome these limitations, biophysical multi-compartment
models partition the signal into a few predefined pools, typically intra-
axonal, extra-axonal and free water, and estimate their respective 
volume fractions and diffusivity (Niendorf et al., 1996; Alexander 
et al., 2007). Representative examples include the free water elimina-
tion (FWE) model, neurite orientation dispersion and density imaging 
(NODDI) and soma and neurite density imaging (SANDI) (White et al., 
2013; Zhang et al., 2012; Palombo et al., 2020). While biologically 
intuitive, these models assume that just a few discrete compartments 
can represent the underlying microstructural heterogeneity. In reality, 
tissue diffusivity spans a continuum, producing a broad spectrum of 
apparent diffusion coefficients (Yablonskiy et al., 2003). 

Spectrum-based approaches attempt to embrace this continuum. 
Diffusion spectrum imaging (DSI) directly reconstructs the full prob-
ability density function of the diffusion displacement by sampling in 
the three-dimensional 𝑞-space. Diffusion basis spectrum imaging (DBSI) 
and restriction spectrum imaging (RSI) fit the data with a series of 
components spanning a range of diffusivity or spatial scales (Wang 
et al., 2011; White et al., 2013). DSI, however, demands hundreds 
of directions, whereas DBSI and RSI usually exploit only part of the 
recovered spectrum in subsequent biological interpretation.

Building on these landmark articles, we introduce the Diffusion 
Bubble Model (DBM), a simple, stable and spectrum-based approach 
to analyzing brain microstructure with dMRI.  The model represents 
the voxel signal as the superposition of numerous mono-exponential 
decays (‘‘bubbles’’) with purely isotropic diffusion tensors. Fitting this 
continuous isotropic spectrum generates a compact ‘‘fingerprint’’ of 
the local restriction landscape without prescribing how many compart-
ments exist or what their diffusivity should be. Directional informa-
tion, when needed, can be retained through a small set of averaged 
anisotropic tensors, but is not required for spectrum estimation. Among 
the open-source models, FWE provides a well-validated estimation of 
the fast (free-water) compartment, precisely the high-diffusivity tail 
that appears in the DBM spectrum. Comparing the DBM’s fast-diffusion 
coefficient with the FWE free-water fraction therefore offers an in-
dependent cross-check that the spectrum is biologically meaningful. 
DTI, meanwhile, remains the clinical workhorse and offers a familiar 
baseline against which to gauge any added value.  We tested DBM in in-
vivo neonatal data containing punctate white-matter lesions (PWMLs) 
, a common injury in neonates, that can be associated with long-term 
motor, cognitive, and behavioral deficits (de Bruijn et al., 2023; Tusor 
et al., 2017; Guo et al., 2017; de Bruïne et al., 2011; Arberet et al., 
2017). PWMLs typically appear hyperintense on T1-weighted (T1w) 
images and hypointense on T2-weighted (T2w) images, and restricted 
diffusion on diffusion maps, though they can sometimes present with 
only subtle or even no detectable T2w and DTI-based changes (Nguyen 
et al., 2019; Pavaine et al., 2016; Niwa et al., 2011; Rutherford et al., 
2010; Hayman et al., 2019).

We hypothesize that DBM will detect PWML-related microstructural 
alterations more sensitively than DTI and will match the FWE model’s 
ability to isolate fast (free-water) signal. Specifically, we anticipate a 
2 
Fig. 1. Schematic illustration of the Diffusion Bubble Model (DBM). Red balls represent 
isotropic diffusion ‘‘bubbles’’ of varying sizes, each corresponding to a distinct isotropic 
diffusion tensor. The blue cylinder is the anisotropic adjustment term, capturing the 
apparent anisotropic diffusion effects along specific directions (only a single cylinder 
is shown here for simplicity). By decomposing the measured signal into these isotropic 
and anisotropic adjustment terms, DBM provides a more comprehensive representation 
of tissue microstructure than conventional diffusion tensor models.

leftward (toward lower diffusivities) shift in the isotropic spectrum 
within PWML regions, consistent with increased restriction.  By com-
paring DBM-derived metrics with both DTI parameters and the FWE 
free-water fraction, we aim to establish DBM as a simple, robust, 
clinically practical tool for identifying PWMLs and characterizing their 
underlying tissue damage. 

2. Methods

2.1. Model

The Diffusion Bubble Model assumes that the measured diffusion-
weighted signal can be decomposed into a combination of isotropic 
components and averaged anisotropic contributions. First, the model 
separates the apparent anisotropic contribution (anisotropic adjustment 
term) from the diffusion signal, thereby enabling a clearer characteri-
zation of the isotropic diffusion elements that remain. These isotropic 
components are then represented as a continuous spectrum of isotropic 
diffusion ‘‘bubbles’’, each corresponding to an isotropic diffusion tensor 
with a distinct effective radius or diffusion scales.

A schematic representation of DBM is provided in Fig.  1. Here, the 
red balls correspond to isotropic diffusion tensors (‘‘bubbles’’), while 
the blue cylinder(s) represent anisotropic adjustment diffusion tensors 
aligned along specific direction(s). By decomposing the diffusion MRI 
signal into these elements, DBM aims to provide a more detailed and 
sensitive representation of the underlying tissue microstructure than 
conventional diffusion tensor models. Fig.  2 illustrates DBM gener-
ates an isotropic diffusion spectrum/coefficient curve by plotting the 
isotropic diffusion ‘‘bubble’’ decomposition coefficients against increas-
ing isotropic ‘‘bubble’’ diameters. This curve provides a detailed profile 
of the isotropic diffusion distribution within the tissue. We hypothesize 
that for tissues affected by a pathology (punctate white matter lesions 
in this study), the isotropic diffusion spectrum curve may shift, indi-
cating altered microstructural properties compared to healthy control 
tissues. Through this decomposition, DBM may detect subtle tissue 
changes more sensitively than traditional diffusion models.

𝑆𝑘∕𝑆0 =
𝑀
∑

𝑖=1
𝑓𝐷𝑖

𝑒−𝑏𝑘𝐠
𝐓
𝐤𝐃𝐢𝐠𝐤 +

𝑁
∑

𝑗=1
𝑓𝐷𝑗

𝑒−𝑏𝑘𝐠
𝐓
𝐤𝐃𝐣𝐠𝐤 + 𝜖𝑘 (1)

𝑆𝑘∕𝑆0 = 𝑆𝑖𝑠𝑜 + 𝑆𝑎𝑛𝑖𝑠𝑜 + 𝜖𝑘 (2)

The full mathematical formulation of the model is presented in 
Eq. (1). In this equation, 𝑆𝑘 represents the measured diffusion-weighted 
signal for the 𝑘th acquisition, and 𝑆0 is the corresponding
non-diffusion-weighted signal. Thus, the ratio 𝑆𝑘∕𝑆0 represents the 
normalized diffusion-weighted signal. 𝑏𝑘 denotes the 𝑘th diffusion-
encoding magnitude (b-value) and 𝐠𝐤 the associated unit gradient 
direction. 𝐃𝐢 is the 𝑖th isotropic tensor characterized by its scalar 
diffusivity 𝐷𝑖, whereas 𝐃𝐣 is the 𝑗th cylindrically symmetric anisotropic 
tensor with axial diffusivity 𝜆  and radial diffusivity 𝜆 . 𝑀 and 𝑁 are 
∥ ⟂
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Fig. 2. Conceptual DBM Isotropic Diffusion Spectrum Curves. These illustrative DBM-
derived curves compare isotropic diffusion spectrum for tissues affected by punctate 
white matter lesions (PWMLs, dashed red) and healthy control tissues (Controls, gray). 
The 𝑥-axis represents isotropic bubble diameters (diffusion levels), and 𝑦-axis shows 
isotropic decomposition coefficients. This paper hypothesized curve shifts happened in 
the PWMLs compared to controls, because of restricted diffusion in PWMLs.

the numbers of isotropic and anisotropic components, respectively. The 
anisotropic adjustment term is optional, so 𝑁 can be set to zero when 
needed. The coefficients 𝑓𝐷𝑖

 and 𝑓𝐷𝑗
 characterize the relative contri-

butions of the 𝑖th isotropic and 𝑗th anisotropic diffusion components, 
respectively; by construction, their sums over all components equal to 
one. 

On the right-hand side of the equation, the model separates the 
signal into two terms: an isotropic term (highlighted in red) and an 
anisotropic adjustment term (highlighted in blue). The isotropic term 
represents diffusion that occurs equally in all directions, modeled as 
a series of isotropic diffusion tensors with varying effective diameters 
𝐷𝑖. By spanning a range of diffusion scales, this approach provides 
a more nuanced characterization of isotropic diffusion, rather than 
relying solely on standard scalar metrics like AD, RD, or MD.

The anisotropic adjustment term accounts for averaged effects of 
directional diffusion, as commonly observed in white matter tracts and 
part of gray matter. The role of the anisotropic term is twofold: (1) to 
minimize the influence of anisotropic diffusion on the isotropic signal, 
ensuring a more stable and accurate decomposition of the isotropic dif-
fusion signal; (2) to capture the direction-specific diffusion information 
associated with anisotropic tissues.

2.2. Algorithm for solving the model’s parameters

The DBM algorithm involves determining both isotropic and
anisotropic diffusion components. The ultimate goal of the algorithm 
is to set appropriate values for 𝐷𝑖 and 𝐷𝑗 (Eq. (1)) and to estimate 
their corresponding coefficients 𝑓𝐷𝑖

 and 𝑓𝐷𝑗
 for further analysis.

2.2.1. Part 1: Anisotropic term adjustment
This step focuses on estimating the anisotropic diffusion tensors 𝐃𝐣

and their coefficients 𝑓𝐷𝑗
. We first reformulated the model into Eq. (3), 

representing the diffusion-weighted signal originating from anisotropic 
components, and Eq. (5) measuring the average absolute deviation 
(loss) between the sphericity of each decomposed isotropic tensor and 
1.

The underlying premise is that optimal values of 𝑓𝐷𝑗
 and 𝐷𝑗 will ac-

curately capture anisotropic diffusion, thereby minimizing its contribu-
tion to the overall signal. This reduction allows the isotropic tensors 𝐃𝐢, 
derived from Eq. (4), to become more spherical (sphericity approaching 
1), thus enhancing the reliability of the isotropic decomposition.

𝑆𝑎𝑛𝑖𝑠𝑜 =
𝑁
∑

𝑗=1
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𝑒−𝑏𝑘𝐠
𝐓
𝐤𝐃𝐣𝐠𝐤 (3)

𝑆𝑘∕𝑆0 − 𝑆𝑎𝑛𝑖𝑠𝑜 =
𝑀
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𝑒−𝑏𝑘𝐠

𝐓
𝐤𝐃𝐢𝐠𝐤 (4)
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3 
𝐿𝑜𝑠𝑠 = 1
𝑀

𝑀
∑

𝑖=1
|𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦(𝐃𝐢) − 1| (5)

To simplify calculations and reduce computational load, we used a 
single, highly anisotropic, cylindrical-like tensor (White et al., 2013; 
Ramirez-Manzanares et al., 2007). This tensor effectively extracted 
anisotropic signal components while exerting minimal influence on 
the isotropic estimates. Specifically, we set the eigenvalues to 𝜆1 =
3.10 μm2/ ms (slightly above typical CSF diffusivity of 3.0 μm2/ ms) 
along the principal fiber direction, and 𝜆2 = 𝜆3 = 0.05 μm2/ ms, for the 
perpendicular directions, forming a long, thin cylindrical profile (Kings-
ley, 2006). The principal diffusion directions (eigenvectors) for these 
anisotropic tensors were derived from standard DTI reconstructions, 
where 𝑉1 is the primary eigenvector indicating the principal diffusion 
direction (Kingsley, 2006).

We then iteratively optimized the anisotropic coefficient 𝑓𝐷𝑗
 from 

0 to 0.99 in increments of 0.005 (Eq. (3)) to estimate the isotropic 
diffusion tensors 𝐃𝐢 (Eq. (4)), using the loss function defined in Eq. (5) 
as a guide. For simplicity and computational efficiency, we employed a 
single anisotropic tensor (𝑁 = 1) and a single isotropic tensor (𝑀 = 1) 
in this step, leading to loss = |1 − sphericity|).

2.2.2. Part 2: Determining isotropic diffusion coefficients
After determining the anisotropic terms (𝑓𝐷𝑗

 and 𝐷𝑗), we incorpo-
rated them back into Eq. (1), simplifying the model to its isotropic 
component (Eq. (4)). Since the anisotropic contribution is now known, 
the isotropic model was effectively linear with respect to the isotropic 
diffusion values 𝐷𝑖.

Physiological plausibility is ensured by constraining 𝐷𝑖 within a 
range from 0.1 μm2/ ms (below typical intracellular diffusivity) to
3.2 μm2/ ms (above typical CSF diffusivity). We tested various in-
tervals 𝛥𝑑 between neighboring 𝐷𝑖 values (0.15, 0.20, 0.25, 0.30, and 
0.35 μm2/ ms) in different tissue types (gray matter, white matter, 
and CSF) to identify a small interval that yields both stable isotropic 
decomposition curves and high diffusion resolution.

With the isotropic diffusion array 𝐷𝑖 determined, we computed the 
coefficients 𝑓𝐷𝑖

 via a non-negative least-squares fit, and normalized 
them so their sum equals one. Plotting these coefficients against their 
corresponding diffusion values 𝐷𝑖 produces the isotropic decomposition 
curve (Fig.  2).

Because no universally accepted diffusivity cut-offs exist for separat-
ing restricted and non-restricted diffusion within a voxel, we summa-
rized the isotropic spectrum with a set of shape-based metrics rather 
than fixed thresholds (Wang et al., 2015; Ye et al., 2020; Lin et al., 
2019). Specifically, for every voxel we calculated Main peak value 
(𝑓𝐷𝑝𝑒𝑎𝑘

): the coefficient at the curve’s highest point, indicating the dom-
inant diffusion fraction within the voxel; Main peak diffusion Position 
(𝐷𝑝𝑒𝑎𝑘): the diffusion level at which the main peak occurs, revealing 
the predominant diffusion scale in the tissue; Full Width at Half Max-
imum (FWHM): the width of the curve at half its maximum height, 
illustrating how uniformly the diffusion is distributed around the main 
peak; 14 /

1
2 /

3
4  area positions: the diffusion values at which the cumula-

tive area under the curve reaches 25%, 50%, and 75% of the total, 
respectively. These thresholds help identify shifts in the distribution 
of isotropic diffusion compartments; Fast diffusion coefficients: the sum 
of coefficients at higher 𝐷𝑖 values, representing the fraction of rapid 
diffusion components within the voxel. These spectrum-pattern metrics 
provide a robust, threshold free description of systematic shifts in the 
isotropic profile. Averaged within lesion, contralateral, and control 
regions of interest, they allow us to test the hypothesis that PWMLs 
induce measurable alterations in the isotropic diffusion decomposition 
curves.
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Fig. 3. Locations and anisotropic coefficient fitting for representative voxels. (a) Locations of the three representative voxels on Fractional Anisotropy (FA). (b) Calculation process 
for isotropic sphericity by looping anisotropic coefficients from 0 to 0.99 in steps of 0.005. (c) Corresponding anisotropic coefficient map. (d) Scatter plot of anisotropic coefficients 
versus FA values with regression line.
2.3. Subjects

We used MR imaging data from the Developing Human Connectome 
Project (dHCP) dataset, which was collected at the Center for the De-
veloping Brain, King’s College London with the approval of the United 
Kingdom Health Research Authority (Bastiani et al., 2019; Makropoulos 
et al., 2018). We included in this study 20 infants with punctate white 
matter lesions localized to the optic radiation. At the time of scanning, 
these infants had a mean gestational age (GA) of 37.82±3.00 weeks, and 
their mean GA at birth was 35.57±3.76 weeks. For comparison purposes, 
we selected 20 healthy control infants from the same database matching 
scanning age, GA at birth, birth weight, and sex, to ensure balanced 
matching against the PWML group. The control group had a mean GA at 
scan of 37.97±2.84 weeks and a mean GA at birth of 35.79±3.75 weeks. 
Additionally, for within-subject analyses, the contralateral (no-clear-
lesioned) regions of the PWML group were examined as an internal 
control.

Infants with confirmed PWMLs were identified through a rigor-
ous evaluation process conducted by four trained researchers from 
our laboratory. Infants with PWMLs were identified based on hall-
mark imaging patterns of PWMLs, including hyperintensity on T1w 
images, hypointensity on T2w images, localized to one side of the optic 
radiation.

All neonates underwent both diffusion MRI and structural MRI scans 
using a 3T Philips Achieva MRI scanner. The resolution for T2w images 
was 0.5 mm × 0.5 mm × 0.5 mm with repetition time (TR) of 12, 000 ms
and echo time (TE) of 156 ms (Makropoulos et al., 2018). Diffusion 
MRI data included 20 𝑏0 images and three diffusion-weighting shells 
(40 𝑏 = 400 s/mm2, 88 𝑏 = 1000 s/mm2, and 128 𝑏 = 2600 s/mm2), with 
a spatial resolution of 1.172 mm × 1.172 mm × 1.5 mm. The acquisition 
was performed with TR / TE of 3800 / 90 ms (Bastiani et al., 2019).

2.4. Data processing

To align structural and diffusion MRI data, T1w and T2w images 
from each scan were registered with each other and aligned with 
the diffusion MRI space (Jenkinson et al., 2002; Greve and Fischl, 
2009). After ensuring proper alignment, regions of interest (ROIs) were 
defined on color-coded FA maps as well as on T1w and T2w images. 
ROIs were drawn to encompass the entire extent of the lesion in order 
to include multiple voxels per lesion; if the area of the lesion appeared 
different on the various imaging maps, the lesion boundary defined by 
T1w served as the standard reference. Corresponding ROIs were then 
placed in the anatomically equivalent locations on the contralateral 
side of the same infant’s brains and in matched control infant’s brains, 
ensuring a consistent basis for comparison.

Next, the Diffusion Bubble Model was applied to the diffusion 
MRI data to generate isotropic and anisotropic coefficient maps. Main 
DBM metrics were calculated for each voxel, including main diffusion 
positions, FWHM, left and right FWHM diffusion positions, quarter, 
4 
half, and three-quarter area diffusion positions, and fast diffusion co-
efficients (see example in Fig.  4). These metrics were then averaged 
within each ROI for subsequent comparative analysis.

To benchmark DBM against established methods, we fitted the open-
source FWE model to the same diffusion data. In both model, the 
fast (free-water–dominated) compartment was defined as having an 
isotropic diffusivity 𝐷 ≥ 2.5 μm2∕ms, consistent with prior work (Kim 
et al., 2025; Isaacs et al., 2021; Pasternak et al., 2009). For DBM, 
the fast-diffusion fraction was obtained by integrating all isotropic-
spectrum coefficients 𝑓𝐷𝑖

 with 𝐷𝑖 above this threshold. 
Standard diffusion-tensor imaging (DTI) metrics (AD, RD, MD and 

FA) were extracted using the weighted-least-square DTI reconstruction 
method (Chung et al., 2006). These DTI metrics serve as the clini-
cal baseline against which the additional sensitivity of DBM (and its 
comparison with FWE) is evaluated.

2.5. Experiment design and statistics

We conducted two primary experiments to evaluate the perfor-
mance of the Diffusion Bubble Model.

2.5.1. Parameter optimization and validation using representative tissue 
types

To determine optimal parameters for DBM, we selected representa-
tive voxels from three distinct tissue types: cortical gray matter, white 
matter, and cerebrospinal fluid, as illustrated in Fig.  3.

First, we focused on the anisotropic component using the algorithm 
described in Section 2.2 part 1. We hypothesized that CSF, with its high 
free-water content, would exhibit near-zero anisotropic coefficients, 
corresponding to isotropic diffusion and very low FA values. Likewise, 
cortical gray matter, containing relatively more free water and fewer 
myelinated fibers than white matter, was also expected to have low 
anisotropic coefficients. In contrast, white matter, characterized by 
organized, myelinated fiber tracts and lower free-water content, should 
display higher anisotropic coefficients. By plotting these coefficients 
against FA values and performing regression analyses, we aimed to 
confirm that the anisotropic coefficients derived from DBM accurately 
capture tissue-specific anisotropy.

Next, we optimized the isotropic diffusion parameters by varying 
the diffusion interval step size 𝛥𝑑 among 0.15, 0.20, 0.25, 0.30, and 
0.35 μm2/ ms with a diffusion range of 0.1 to 3.2 μm2/ ms. By examining 
how different interval steps influenced the isotropic decomposition 
curves for each tissue type, we identified the smallest interval that 
provided the most stable and discriminative results.

Finally, we applied DBM parameters to the representative voxels of 
each tissue type and extracted the resulting DBM-derived metrics. We 
then compared these metrics against DTI metrics, using this limited 
set of representative voxels to evaluate DBM’s ability to distinguish 
microstructural differences more effectively than DTI. Although this 
analysis is not exhaustive, it provides an initial indication that DBM 
may offer a more nuanced and accurate characterization of underlying 
tissue properties compared to standard DTI metrics.
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Fig. 4. Fitting results for individual voxels in: (a) Cortical gray matter; (b) White matter; (c) Cerebrospinal fluid (CSF). For each voxel, the isotropic decomposition coefficient 
curves are displayed using different isotropic diffusion interval steps 𝛥𝑑 of 0.15, 0.20, 0.25, 0.30, and 0.35 μm2/ ms within a diffusion range of 0 to 3.2 μm2/ ms. These curves 
illustrate how varying 𝛥𝑑 affects the stability and distinguishability of the isotropic decomposition for each tissue type.
2.5.2. Detecting and characterizing PWMLs
After validating DBM’s effectiveness, we utilized DBM metrics and 

curves to explore potential subgroups within punctate white matter 
lesions.

To investigate whether DBM could detect microstructural differ-
ences associated with these PWML subtypes, we conducted comparisons 
of DBM-derived diffusion coefficient curves between ROIs in PWML 
group and healthy control group using paired t-tests (𝑝 < 0.05) within 
each subgroup. Additionally, we performed within-subject comparisons 
by examining corresponding contralateral ROIs in the contralateral 
group, again utilizing paired t-tests (𝑝 < 0.05).

We hypothesized that PWMLs would induce a leftward shift in 
the isotropic diffusion decomposition coefficient curves, reflecting re-
stricted diffusion and underlying microstructural damage (Fig.  2). By 
comparing lesion sites to both contralateral regions and healthy con-
trols, we aimed to confirm that DBM metrics effectively capture subtle 
tissue changes specifically linked to PWMLs.

For a comprehensive assessment, we also analyzed conventional DTI 
metrics to detect differences among lesion, contralateral, and control 
groups within each PWML subtype. By comparing DBM and DTI find-
ings, we assessed DBM’s added value in identifying and characterizing 
PWML-related tissue alterations.

3. Results

3.1. Parameter optimization and validation using representative tissue types

Through iterative optimization of the anisotropic coefficient from 
0 to 0.99 in 0.005 increments, we identified distinct result values for 
each tissue type (Fig.  3(b)). Sphericity peaked at 0.98 for gray matter, 
0.81 for white matter, and 0.96 for CSF, corresponding to optimal 
anisotropic coefficients of 0.09, 0.36, and 0.02, respectively. These 
values align with known tissue properties: minimal anisotropy in CSF, 
low anisotropy in gray matter, and higher anisotropy in white matter. 
DBM-derived anisotropic coefficients exhibited a strong correlation 
with FA values (𝑟 = 0.8274, 𝑝 < 0.0001) (Fig.  3(d)) and anisotropic 
coefficient map closely resembled the FA map (Fig.  3(c)), confirming 
that DBM effectively captures anisotropic diffusion properties.

Isotropic decomposition curves were generated using diffusion in-
terval steps (𝛥𝑑) of 0.15, 0.20, 0.25, 0.30, and 0.35 μm2/ ms (Fig.  4). 
Although changes in 𝛥𝑑 affected coefficient magnitudes, the overall 
curve shapes and peak positions of the isotropic decomposition curves 
remained consistent across tissue types, preserving their discriminative 
features. We selected the smallest 𝛥𝑑 = 0.15 μm2/ ms for subsequent 
analyses.
5 
3.2. Comparison of DBM and DTI metrics across tissue types

DTI and DBM metrics were compared in representative white mat-
ter, gray matter, and CSF voxels (Table  1). DBM metrics showed greater 
percentage differences between tissue types than DTI metrics. For 
example, the anisotropic coefficient difference between white matter 
and gray matter reached 86.1%, compared to a 76.5% difference in 
FA. Similarly, the main diffusion position (DBM metric) exhibited a 
52.2% difference between white and gray matter, surpassing differ-
ences observed with AD (36.9%), RD (42.4%), and MD (4.1%). The 
left boundary of FWHM of isotropic diffusion decomposition coefficient 
curve showed a 525.0% difference between white matter and CSF, far 
exceeding differences observed with DTI metrics. These findings indi-
cate that DBM provides enhanced sensitivity in characterizing tissue 
microstructure.

3.3. Fast water diffusion components

3.3.1. Evaluation of fast water diffusion elimination performance
We compared DBM derived fast water diffusion coefficients with 

those obtained from the Free Water Elimination model (Fig.  5). Across 
all tissue types, DBM coefficients correlated strongly with FWE results 
(e.g., all voxels combined: 𝑟 = 0.9319, 𝑝 < 0.0001; Gray matter: 
𝑟 = 0.8447, 𝑝 < 0.0001). Similar strong correlations were observed for 
white matter, and CSF. These high correlations and narrow confidence 
intervals confirm that DBM effectively separates fast water diffusion 
components, in close agreement with established FWE methods.

3.3.2. Identification of PWML subtypes based on fast diffusion coefficients
Applying DBM to punctate white matter lesions in optic radiation re-

vealed two distinct lesion subtypes, differentiated by their fast diffusion 
coefficients:

Wet-Type PWMLs (wet lesions): These lesions exhibited elevated 
fast diffusion coefficients relative to both contralateral and control 
regions, suggesting higher free water content.

Dry-Type PWMLs (dry lesions): These lesions did not show elevated 
fast diffusion coefficients compared to contralateral and control tis-
sues, potentially reflecting different pathologies such as chronic gliosis 
without substantial free water accumulation.

Fig.  6 illustrated these findings. Wet lesions (pink circles) consis-
tently showed higher fast diffusion coefficients across scanning ages, 
whereas dry lesions (red circles) more closely resembled contralat-
eral (orange triangles) and control (gray squares) regions. All groups 
demonstrated a decreasing trend in fast diffusion coefficients with 
increasing scanning age, consistent with normal neonatal brain mat-
uration and a gradual reduction in free water content (Jelescu et al., 
2020).

Of the 20 PWML cases analyzed, 10 were classified as wet lesions 
and 10 as dry lesions. Although their gestational ages at scanning were 
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Table 1
Comparison of DTI and DBM Metrics for Representative Voxels of White Matter, Gray Matter, and Cerebrospinal Fluid. This table presents the absolute values of Diffusion Tensor 
Imaging (DTI) and Diffusion Bubble Model (DBM) metrics for representative voxels of three different tissue types: white matter, cortical gray matter, and cerebrospinal fluid (CSF). 
For each metric, the absolute value is displayed. Additionally, the absolute and percentage differences between gray matter and white matter, as well as between CSF and white 
matter, are calculated to highlight the contrast in diffusion properties among the tissues.
 White matter Gray matter CSF

 WM GM GM−WM 100(GM−WM)
WM CSF CSF−WM 100(CSF−WM)

WM  
 μm2/ms μm2/ms μm2/ms % μm2/ms μm2/ms %  
 AD (DTI) 1.85 1.17 −0.68 −36.89 2.59 0.74 40.17  
 RD (DTI) 0.65 0.93 0.28 42.38 2.26 1.60 245.08  
 MD (DTI) 1.05 1.01 −0.04 −4.07 2.37 1.32 125.02  
 FA (DTI) 0.58 0.14 −0.45 −76.50 0.09 −0.49 −84.03  
 Aniso. coefficient 0.36 0.05 −0.31 −86.11 0.02 −0.34 −94.44  
 Main diff. position 1.15 0.55 −0.60 −52.17 3.10 1.95 169.57  
 Peak value 0.07 0.10 0.04 55.80 0.21 0.15 226.60  
 FWHM 1.80 1.05 −0.75 −41.67 0.60 −1.20 −66.67  
 Left FWHM 0.40 0.25 −0.15 −37.50 2.50 2.10 525.00  
 Right FWHM 2.20 1.30 −0.90 −40.91 3.10 0.90 40.91  
 1∕4 area position 1.00 0.70 −0.30 −30.00 2.50 1.50 150.00  
 1∕2 area position 1.30 1.00 −0.30 −23.08 2.80 1.50 115.38  
 3∕4 area position 1.75 2.05 0.30 17.14 2.95 1.20 68.57  
Fig. 5. Evaluation of Fast Water Diffusion Elimination Performance Compared to the Free Water Elimination (FWE) Model . This figure presents scatter plots comparing the fast 
water diffusion coefficients derived from our model with the free water fraction (FWDTI) obtained from the FWE model: (a) Scatter plot for all voxels; (b) Scatter plot in gray 
matter; (c) Scatter plot in white matter; (d) Scatter plot in cerebrospinal fluid (CSF).
Fig. 6. Age-Related patterns of Fast Diffusion Coefficients and days after birth at MRI in PWML Subtypes. (a) Scatter plot of the fast diffusion coefficient versus scanning age for 
different groups: wet-type PWMLs (pink circles), dry-type PWMLs (red circles), contralateral regions (orange triangles), and control regions (gray squares). Trend lines are fitted for 
each group to illustrate how fast diffusion coefficients vary across scanning ages. (b) Box plot of days after birth for wet-type (pink) and dry-type (red) PWMLs (Mann–Whitney, 
one-sided, wet < dry: 𝑈 = 26.0, 𝑝 = 0.0376). The center line indicates the median; open triangle indicates mean; box limits represent the upper and lower quartiles; whiskers extend 
to 1.5× the inter-quartile range.
similarly distributed (Fig.  6(a) top), a box plot of days after birth 
(Fig.  6(b)) revealed significantly shorter postnatal ages at MRI for wet-
type (pink) compared to dry-type (red) PWMLs (median of 5.50 days 
for wet type vs. 14.00 days for dry, Mann–Whitney, wet < dry: 𝑈 =
26.0, 𝑝 = 0.0376). Subsequently, these subtypes were used for further 
analysis, enabling a more nuanced understanding of the pathology and 
development of PWMLs.

3.3.3. Examples of wet- and dry-type PWMLs
To illustrate the distinct diffusion profiles of wet- and dry-type 

PWMLs, we present two representative cases, each displaying T1w, 
T2w, and MD images, along with DBM decomposition maps at selected 
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diffusion levels, and all on the same axial slice containing the PWML 
in the optic radiation.

A wet-lesion example in the optic radiation is shown in Fig.  7 from a 
newborn scanned at 35.00 weeks GA (born at 34.14 weeks). Consistent 
with previous reports (Nguyen et al., 2019; Niwa et al., 2011; Hayman 
et al., 2019), the lesion appeared hyperintense on T1w, hypointense on 
T2w, and restricted diffusion on MD maps. At various DBM diffusion 
levels: (a) 𝐷 = 0.25 μm2/ ms: Lesion was clearly brighter than the 
contralateral side. (b) 𝐷 = 1.00 μm2/ ms: Signal intensifies further. 
(c) 𝐷 = 2.35 μm2/ ms: A distinctly darker region emerged. (d) 𝐷 =
3.10 μm2/ ms: Elevated fast diffusion components appeared.



E. Zhang et al. NeuroImage 317 (2025) 121324 
Fig. 7. Visualization of a Wet-Type PWMLs in the optic radiation using DTI and DBM. (a)–(d) Lesion appearance on: T1-weighted (T1w), T2-weighted (T2w), Mean Diffusivity 
(MD), and RGB-FA images. (e)–(h) Diffusion Bubble Model decomposition maps at diffusion levels: 𝐷 = 0.25, 1.15, 2.35, and 3.10 μm2/ ms. Red arrows indicate the PWML lesion, 
while orange arrows point to the contralateral (non-lesion) region. The control region of interest (ROI), not shown here, is located in a matched control subject. (i) Isotropic 
decomposition coefficient curves for the lesion, contralateral, and control ROIs, illustrating differences in diffusion properties among the regions. The infant was born at gestational 
age of 34.14 weeks and scanned at 35.00 weeks gestational age.
Fig. 8. Visualization of a Dry-Type PWMLs in the Optic Radiation Using DTI and DBM. (a)–(d) Lesion appearance on: T1-weighted (T1w), T2-weighted (T2w), Mean Diffusivity 
(MD), and RGB-FA images. (e)–(h) Diffusion Bubble Model (DBM) decomposition maps at diffusion levels: 𝐷 = 0.25, 1.15, 2.35, and 3.10 μm2/ ms. Red arrows indicate the PWML 
lesion, while orange arrows point to the contralateral (non-lesion) region. The control region of interest (ROI), not shown here, is located in a matched control subject. (i) Isotropic 
decomposition coefficient curves for the lesion, contralateral, and control ROIs, illustrating differences in diffusion properties among the regions. The infant was born at gestational 
age of 39.29 weeks and scanned at 39.43 weeks gestational age.
The isotropic decomposition coefficient curves (Fig.  7(i)) high-
lighted key differences between lesion and non-lesion regions. In par-
ticular, the lesion’s 1∕4 and 1∕2 area lines shift leftward, and its FWHM 
expanded compared to contralateral and control regions. These changes 
imply an altered microstructure and increased free water content, 
aligning with an edema-like or acute inflammatory state.

A dry-lesion example in the optic radiation is shown in Fig.  8 from 
a newborn scanned at 39.43 weeks GA (born at 39.29 weeks). The 
lesion also appeared hyperintense on T1w, hypointense on T2w, and 
restricted on MD, but at the highest and lowest diffusion levels (𝐷 =
0.25 μm2/ ms and 𝐷 = 3.10 μm2/ ms), the lesion did not visibly differ 
from contralateral tissue, unlike the wet-lesion example. Differences 
were observed at intermediate diffusion levels (𝐷 = 1.00 μm2/ ms and 
𝐷 = 2.35 μm2/ ms), indicating microstructural alterations with less free 
water accumulation.

The corresponding isotropic decomposition curves (Fig.  8(i)) con-
firmed these observations: while the lesion demonstrated a leftward 
shift in the 1∕4 and 1∕2 area lines and a wider FWHM relative to 
contralateral and control regions (similar to the wet lesion), there 
was no significant elevation of fast diffusion components. This profile 
suggests a different pathological mechanism, likely involving structural 
changes without prominent edema.
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3.4. Group-level analysis of Lesion, Contralateral, and Control Regions 
using DBM

Averaged isotropic decomposition coefficient curves from 20 infants 
with PWMLs in the optic radiation (10 wet PWMLs and 10 dry PWMLs) 
were shown in Fig.  9. Quantitative DBM metrics, including main diffu-
sion position, anisotropic coefficient, FWHM, were summarized in Fig. 
10, while corresponding DTI results were presented in Fig.  11.

3.4.1. DBM spectrum curve analysis
The averaged DBM curves (Fig.  9) revealed notable differences 

among lesion, contralateral, and control regions:
Combined group. Compared to contralateral and control regions, lesion 
regions showed a leftward shift in both the 1∕4 and 1∕2 area lines. 
Specifically, the 1∕4 area line shifted from 1.30 μm2/ ms in controls 
to 1.15 μm2/ ms (contralateral) and 0.85 μm2/ ms (lesion), while the 
1∕2 area line shifted from 1.60 μm2/ ms (control and contralateral) to 
1.30 μm2/ ms (lesion). This pattern suggested an increased proportion 
of slower diffusion components.
Wet PWMLs. These lesions showed more pronounced leftward shifts 
at the slower diffusion thresholds (e.g., 1∕4 area line) and substantial 
increases in fast diffusion coefficients, consistent with elevated free 
water content in the individual wet-type PWML example.
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Fig. 9. Averaged Isotropic Decomposition Coefficient Curves for Lesion, Contralateral, and Control Regions in the Optic Radiation. This figure presents the averaged isotropic 
decomposition coefficient curves within the optic radiation for: (a) Subjects with both Type 1 (wet) and Type 2 (dry) punctate white matter lesions (PWMLs) (𝑁 = 20); (b) Subjects 
with only Wet-type PWMLs (𝑁 = 10); (c) Subjects with only Dry-type PWMLs (𝑁 = 10). Lesion Regions: Red solid curve; Contralateral Regions: Orange dashed curve, from the 
same subjects as the lesion regions; Control Regions: Gray dashed curve, from 20 paired healthy controls.
Fig. 10. Bar Graphs of Key DBM Metrics in the Optic Radiation Comparing Lesion, Contralateral, and Control Regions. This figure illustrates key Diffusion Bubble Model (DBM) 
metrics in the optic radiation, comparing lesion regions (red bars), contralateral regions (orange bars), and control regions from matched healthy subjects (gray bars). (a) All 
subjects with punctate white matter lesions (PWMLs) (𝑁 = 20), (b) Subjects with only Type 1 (wet) PWMLs (𝑁 = 10), and (c) Subjects with only Type 2 (dry) PWMLs (𝑁 = 10). 
Statistically significant differences are indicated by * (𝑝 < 0.05), ** (𝑝 < 0.01), and *** (𝑝 < 0.001), with the magnitude of changes shown above the significance markers.
Dry PWMLs. While also shifting toward slower diffusion domains, dry-
type PWMLs exhibited less pronounced shifts at the 1∕4 area line, 
and did not display significant increases in fast diffusion components, 
mirroring the pattern seen in individual dry-type PWML example case.

3.4.2. Differences in DBM metrics
Key DBM metrics (Fig.  10) further illustrate the distinction be-

tween wet and dry PWMLs. Compared to control and contralateral 
regions, lesion regions consistently exhibit shifts toward slower dif-
fusion domains; wet lesions additionally show elevated fast diffusion 
components, whereas dry lesions display more moderate alterations 
without a pronounced increase in fast diffusion.
1∕4 area line. Combined group lesions showed a 28.3% reduction rela-
tive to controls and a 23.3% reduction relative to contralateral regions. 
Wet lesions showed even larger reductions of 37.6% (vs. controls) and 
32.4% (vs. contralateral). Dry lesions show moderate reductions of 
18.9% (vs. controls) and 14.5% (vs. contralateral).
1∕2 area line. The combined group exhibited a 21.1% reduction com-
pared to controls and an 18.5% reduction compared to contralateral. 
Wet lesions displayed more pronounced reductions of 28.4% (vs. con-
trols) and 25.5% (vs. contralateral). Dry lesions showed a smaller 
reduction of 13.8% (vs. controls) and 11.6% (vs. contralateral).
Fast diffusion coefficients. Wet Lesions showed a marked increase in 
fast diffusion coefficients, reaching 155.0% above control levels and 
125.1% above contralateral levels, indicating edema-like changes. Dry 
Lesions, contrarily, exhibited a 64.8% decrease compared to contralat-
eral regions and no significant difference compared to controls.
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Anisotropic decomposition coefficients. The combined group showed a 
22.9% reduction relative to controls and no significant change com-
pared to contralateral. Wet lesions exhibited reductions of 24.4% ver-
sus controls and a 23.4% versus contralateral, suggesting diminished 
anisotropy. Dry lesions showed no significant reductions compared to 
either control or contralateral tissue.

3.4.3. Comparison of DTI metrics
When examining DTI metrics in the combined PWML group

(Fig.  11(a)), lesion regions showed moderate reductions compared to 
controls and contralateral regions. Specifically, AD decreased by 28.5% 
compared to controls and 25.5% compared to contralateral regions. RD 
and MD followed similar decreases of roughly 25–27%.

Wet-Type PWMLs For wet-type lesions (Fig.  11(b)), AD was reduced 
by 31.9% and 31.6% compared to control and contralateral regions, 
respectively, suggesting changes in axonal integrity or intracellular 
water content. RD decreased by 29.0% (vs. controls) and 26.9% (vs. 
contralateral), while MD declined by 30.3% (vs. controls) and 29.0% 
(vs. contralateral). FA also dropped by 14.5% and 16.9% compared to 
controls and contralateral regions, respectively.

Dry-Type PWMLs By contrast, dry-type lesions (Fig.  11(c)), exhibited 
somewhat smaller overall reductions in AD, RD, and MD than wet-
type lesions. AD was reduced by 25.2% compared to the control group 
and 19.1% compared to the contralateral group. RD decreased by 
21.6% (vs. controls) and 23.4% (vs. contralateral), and MD was reduced 
by 23.2% (vs. controls) and 21.5% (vs. contralateral). These figures 
indicate moderate but less extensive disruption of diffusion properties 
compared to wet lesions.
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Fig. 11. DTI Bar Graph Comparing AD, RD, MD, and FA in the Optic Radiation Comparing Lesion (red), Contralateral (orange), and Control Regions (gray). (a) All subjects with 
punctate white matter lesions (PWMLs) (𝑁 = 20), (b) Subjects with only Type 1 (wet) PWMLs (𝑁 = 10), and (c) Subjects with only Type 2 (dry) PWMLs (𝑁 = 10). Statistically 
significant differences are marked as * (𝑝 < 0.05), ** (𝑝 < 0.01), and *** (𝑝 < 0.001), with the value differences displayed above the corresponding significance markers.
4. Discussion

In this study, we introduced the Diffusion Bubble Model, a novel 
diffusion MRI model designed to provide more nuanced detection 
and assessment of tissue microstructural alterations than regular MRI 
methods. Our approach decomposes the diffusion-weighted signal into 
isotropic and anisotropic components, generating a continuous distri-
bution of isotropic ‘‘bubbles’’ and capturing anisotropic information 
without constraining the number or geometry of anisotropic compo-
nents. This decomposition allows DBM to characterize broader diffusion 
behaviors within tissues, providing complementary insights beyond 
those afforded by DTI.

4.1. Diffusion Bubble Model performance

Applying DBM to three representative tissue types (gray matter, 
white matter, and CSF) demonstrated its enhanced capability to distin-
guish microstructural differences compared to conventional DTI met-
rics. Although some variability was noted in the anisotropic decompo-
sition coefficient (fraction) maps (Fig.  3(b)), DBM-derived anisotropic 
coefficients strongly correlated with FA values in representative tissue 
voxels (Pearson’s 𝑟 = 0.8274, 𝑝 < 0.0001; Fig.  3(d)). The anisotropic 
decomposition revealed a clear global peak, with tissues exhibiting 
expected anisotropy patterns: CSF approached zero anisotropic fraction; 
gray matter showed moderate anisotropy; and myelinated white mat-
ter displayed higher anisotropic fractions. Although we simplified the 
anisotropic fitting by using a single cylindrical tensor rather than full 
ellipsoids, the resulting sphericity in white matter still reached 0.81. 
This suggests that our simplified approach managed to successfully 
capture anisotropic information before measuring isotropic parts.

The isotropic decomposition was very robust. Even when vary-
ing the interval step size significantly (from 0.15 to 0.35 μm2/ ms, 
Fig.  4), the overall shapes of the isotropic decomposition curves re-
mained consistent, peaking near specific diffusion values for each tissue 
type (gray matter: 0.55 μm2/ ms, white matter: 1.90 μm2/ ms, CSF: 
3.10 μm2/ ms). Additionally, the diffusion position lines shifted left 
for slower diffusion components, with the exception of the 3∕4 area 
position line, which moved to the right when comparing gray matter 
to white matter. These findings suggest that gray matter contains 
more cellular structures (smaller diffusion environments) and possibly 
higher free water components compared to white matter, aligning with 
previous literature (Andersson et al., 2020; Motta et al., 2019; Kelly 
et al., 2022). While DTI metrics (e.g., lower AD, higher RD, and lower 
FA in gray matter) similarly highlight differences between these tissues, 
DBM provided a more nuanced picture, capturing increased free water 
content that is less apparent in DTI.

This enhanced sensitivity was even more evident in analyzing 
PWMLs. For instance, wet-type PWMLs showed less than 31.9% reduc-
tion in DTI compared to the other regions (Fig.  11(b)). In contrast, 
DBM revealed significantly larger shifts to lower diffusion direction 
with multiple metrics (−37.6% in 1∕4 area line, −52.7% in left FHWM) 
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from the control and contralateral groups to the lesion group (Fig. 
10(b)). Moreover, DBM identified substantial increases in fast diffusion 
(155.0% and 125.1% for wet-type PWMLs relative to control and 
contralateral groups, respectively) highlighting its ability to detect 
subtle alterations in tissue composition.

Finally, DBM’s capability to assess and eliminate fast diffusion 
compartments is crucial, given that voxel-level resolution and the 
underlying microstructure differ by orders of magnitude. By compar-
ing DBM-derived fast diffusion coefficients with those from the Free 
Water Elimination model, we observed a strong correlation (Fig.  5), 
confirming that DBM effectively captures and accounts for free water 
components. These results suggest that DBM provides a more com-
prehensive and sensitive depiction of tissue microstructure than DTI, 
offering enhanced diagnostic and research utility.

4.2. Positioning DBM within the dMRI landscape

The Diffusion Bubble Model shares the same core assumption as 
other multicompartment models, a voxel’s diffusion-weighted signal is 
a sum of multiple monoexponential decays (Wang et al., 2011; Zhang 
et al., 2012; Palombo et al., 2020; Rodríguez-Soto et al., 2022; Conlin 
et al., 2021), yet it departs from current frameworks in several decisive 
ways.

First, relative to Diffusion Basis Spectrum Imaging, DBM collapses 
orientation coherent signals into a small, optional set of anisotropic 
tensors and then captures the remaining complexity or remaining signal 
in a continuous one dimensional isotropic spectrum. DBSI, in contrast, 
fits a separate anisotropic compartment for every putative fiber pop-
ulation and models the isotropic component as a series of apparent 
diffusivity terms (Wang et al., 2011; Han et al., 2023). Although this 
strategy can produce compartment-specific parameters, it substantially 
increases the number of fit variables and therefore potentially reduces 
robustness (Han et al., 2023). DBM’s spectrum-focused formulation 
achieves comparable diagnostic sensitivity with fewer parameters, en-
abling stable reconstructions from three-shell data by using isotropic 
tensors in fitting. Furthermore, DBM employs an isotropic diffusion 
spectrum to characterize tissue properties, which is inspired in part by 
the approach used in DBSI. DBSI has demonstrated that the presence 
of certain pathological features (e.g., inflammation) can produce a 
leftward shift in the diffusion spectrum (Wang et al., 2011). DBM 
extends this concept by using multiple characteristic lines rather than 
truncating the spectrum at predefined diffusion boundaries, allowing it 
to capture more nuanced shifts.

Second, when the anisotropic term is suppressed (𝑀 = 0), DBM 
superficially resembles RSI; yet DBM differs in two key respects. RSI 
averages the signal across shells and constrains each isotropic com-
partment to a fixed apparent diffusivity derived from two- or three- 
compartment models or empirically (Rodríguez-Soto et al., 2022; Con-
lin et al., 2021). Although the author claimed that RSI did not explicitly 
prescribe a particular number of compartments in RSI, the number of 
compartments was limited (≤ 5, because of the number of 𝑏 values 
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during acquisition) for current practical experiments (Rodríguez-Soto 
et al., 2022; Conlin et al., 2021). DBM, on the contrary, uses a con-
tinuous isotropic tensor array, freeing model from assumptions about 
how many compartments exist or what their diffusivity should be. 
This flexibility allows DBM to adapt seamlessly to different tissue 
types without re-tuning isotropic component diffusivity and to preserve 
directional cues that shell-averaging would otherwise erase.

Third, DBM sits between extremes represented by DSI and strongly 
biophysical, geometry-specific models such as NODDI or SANDI. DSI 
reconstructs the entire three-dimensional displacement probability den-
sity function using the Fourier transform, but requires hundreds of 
gradient directions, which is an impractical burden for newborn scan-
ning (Van Jay Wedeen Reese et al., 2000). At the other end of the spec-
trum, models like NODDI and SANDI hard-code two or three geometric 
compartments (for example, intra-axonal space, extracellular space, 
and spherical soma) and thus cannot capture a continuum diffusion 
spectrum (Zhang et al., 2012; Palombo et al., 2020). DBM bridges this 
methodological gap by producing a spectrum that reflects continuous 
variation in different diffusion level without prescribing compartment 
geometries or imposing prohibitive acquisition requirements.

Although we have not yet optimized DBM for a dedicated ac-
quisition protocol, the three-shell scheme used in the present study 
already produced stable spectra. In theory, adding more 𝑏-values with 
modest angular coverage sharpens the isotropic spectrum, whereas 
concentrating directions within fewer shells accentuates the averaged 
anisotropic term by broadening or shouldering the spectrum. Because 
DBM’s mathematical structure parallels DBSI, existing DBSI protocols, 
such as 25-direction-and-point acquisitions (𝑏 ≤ 1000–1500 s/mm2), 
should translate directly to DBM with scan times of only a few min-
utes (Zhang et al., 2025; Kim et al., 2025). But a systematic comparison 
of these acquisition scheme and one-, two-, three-shell schemes for DBM 
remains an important avenue for future work.

4.3. Two types of PWMLs: Wet-type and dry-type

By decomposing the diffusion signal, DBM revealed that punctate 
white matter lesions are associated with restricted diffusion, consistent 
with findings from both DTI and previous studies (Hayman et al., 2019; 
Nguyen et al., 2019). More importantly, DBM demonstrated for the 
first time that not all PWMLs share the same microstructural diffusion 
signatures, even though they present similarly with T1w hyperintensity 
and T2w hypointensity. Specifically, we identified two distinct lesion 
subtypes (wet-type and dry-type) on isotropic decomposition curves 
and fast diffusion components.

Histopathological research on focal white matter injuries has de-
scribed microhemorrhages, microcalcifications, necrotic areas, and glial 
cell reactions (Nanba et al., 2007). Early PWMLs often exhibit restricted 
diffusion attributed to hypercellularity, especially infiltration by acti-
vated microglia (Niwa et al., 2011; Rutherford et al., 2010). Our DBM 
results support this notion while adding further detail:

Wet-Type PWMLs show a pronounced leftward shift in the isotropic 
diffusion spectrum at slower diffusion levels (the 1∕4 area line) and a 
substantial increase in fast diffusion coefficients. Slower diffusion levels 
likely reflect intracellular or restricted water compartments (Wang 
et al., 2011; Brunsing et al., 2017; White et al., 2013), and their shifts 
suggest edema-like changes and possibly acute inflammation (e.g., glial 
activation) (Nanba et al., 2007; Zhang et al., 2023). The elevated 
fast diffusion components may reflect a transient phase of free-water 
accumulation, as typically seen in edema. This fast water accumula-
tion could also change water molecules compartmentalization, which 
appears to affect T1w signal more than T2w in neonatal brains (Dubois 
et al., 2021), explaining why wet-type lesions show greater T1w dif-
ferences than dry-type, whereas T2w changes are similar across both 
subtypes (Figs.  7 and 8).

Dry-Type PWMLs, in contrast, display a more uniform leftward 
shift throughout the diffusion spectrum without a significant elevation 
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in fast diffusion coefficients. This pattern suggests elevated cellularity 
or chronic structural rearrangements, but with less fast water compo-
nents. Dry-type lesions may represent a slightly later acute stage where 
edema subsides, yet cellular changes persist. Consequently, infants with 
dry-type PWMLs exhibit a longer interval after birth than those with 
wet-type PWMLs (Fig.  6(b)).

4.4. Clinical implications and future directions

Our findings highlight the Diffusion Bubble Model’s ability to detect 
and differentiate subtypes of punctate white matter lesions, providing 
valuable additional information for lesion characterization. Despite 
these promising results, several limitations must be addressed to en-
hance DBM’s utility: (1) Refining anisotropic modeling: further optimiz-
ing the anisotropic component of DBM and examining its influence on 
the isotropic diffusion spectrum can improve the model’s sensitivity and 
specificity; (2) Optimizing MRI acquisition protocols: establishing stan-
dardized protocols will help ensure consistent and reproducible data 
across different clinical settings, thereby strengthening the reliability 
of DBM-derived metrics; (3) Incorporating histopathological evidence 
would further reinforce DBM’s lesion classification accuracy, especially 
for preclinical studies; (4) Longitudinal evaluations: applying DBM 
to repeated scans can offer insights into lesion evolution over time, 
demonstrating the model’s ability to detect dynamic changes of brain 
injuries and will be of immense help to quantify novel neuroprotection 
strategies; (5) Future studies that include healthy adults and other 
age or species cohorts are warranted to confirm both the general 
performance of DBM and the injury-specific findings reported here. 
(6) Due to limited available resources, we were unable to quantify 
intra-subject repeatability for DBM; future studies will therefore include 
prospective test–retest scans to formally establish reproducibility.

5. Conclusion

This study introduced the Diffusion Bubble Model, a novel MRI 
approach for detection and subtyping white matter lesions. Using punc-
tate white matter lesions in neonates as a test case, we showed that 
DBM effectively decomposes diffusion-weighted signals into an aver-
aged anisotropic contribution and a continuum of isotropic diffusion 
components, then analyze these as an isotropic diffusion spectrum. This 
approach successfully captured the subtle shifts toward slower diffusion 
observed in PWMLs within the neonatal optic radiation. Crucially, 
DBM demonstrated enhanced sensitivity compared to conventional 
techniques, enabling the distinction between two PWML subtypes (wet-
type and dry-type) and offering a more nuanced understanding of lesion 
pathology.
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