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RÉSUMÉ

La naissance prématurée (≈ 10% des naissances vivantes) expose le cerveau néonatal à
un risque élevé de lésions et de handicaps à long terme, soulignant la nécessité urgente
de biomarqueurs microstructuraux à la fois biologiquement spécifiques et cliniquement ap-
plicables. L’imagerie par résonance magnétique de diffusion (IRMd) se prête bien à cette
tâche ; toutefois, les modèles tensoriels classiques confondent divers processus en quelques
moyennes globales, tandis que de nombreuses approches basées sur le spectre nécessitent des
acquisitions longues et sensibles au mouvement, peu adaptées aux soins néonatals.

Cette thèse introduit le Diffusion Bubble Model (DBM), un cadre d’analyse fondé sur le
spectre qui reconstruit le spectre de diffusivité isotropique et fournit des métriques compactes
et interprétables allant au-delà des moyennes tensorielles. Le DBM minimise la dépendance
à l’orientation et localise les variations le long de l’axe de diffusivité, en distinguant les
fluctuations de la composante à diffusion rapide de celles du pic dominé par les tissus. Validé
par simulations et in vivo auprès de 248 nouveau-nés (prématurés modérés à tardifs jusqu’à
43 semaines d’âge post-menstruel), le DBM montre une forte concordance avec les métriques
scalaires établies tout en ajoutant une localisation spectrale révélant des signatures tissulaires
spécifiques et des évolutions dépendantes de l’âge.

Pour permettre son déploiement lorsque les images structurelles sont absentes ou inutilisables,
le DBM est associé à un réseau de segmentation nnU-Net fondé uniquement sur la diffusion,
constituant une chaîne de traitement d’IRMd complète et native. Ce modèle, de diffusion
seule, atteint une excellente précision interne et une meilleure généralisation inter-sites que
les modèles fondés sur les images pondérées en T2, permettant d’inclure 14 sur 88 (16.0%)
nourrissons dépourvus de T2w utilisable dans les analyses ultérieures et favorisant des études
à grande échelle harmonisées.

Deux applications illustrent sa valeur biologique et clinique. Pour l’évaluation du développe-
ment, les trajectoires de maturation des prématurés et des nouveau-nés à terme sont globale-
ment parallèles mais décalées dans le temps, indiquant un début de maturation retardé avec
une immaturité résiduelle concentrée dans les voies frontales et temporales à l’âge équiva-
lent au terme, malgré une croissance volumétrique compensée. Pour la caractérisation des
lésions, le DBM distingue deux phénotypes de lésions ponctuées de la substance blanche
: l’un dominé par l’œdème (« humide »), l’autre par la réorganisation tissulaire (« sèche
»), qui paraissent similaires en IRM structurelle et sur les tenseurs, mais diffèrent par leurs
signatures spectrales, offrant ainsi une spécificité mécaniste utile pour le suivi et le pronostic.

En conclusion, ce travail établit le DBM comme une approche pratique et biologiquement
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interprétable, allant au-delà des moyennes scalaires pour révéler où la maturation et la
pathologie se manifestent au sein du spectre de diffusivité, faisant progresser la segmentation,
l’évaluation développementale et la caractérisation des lésions par IRMd néonatale.

Mots-clés: Diffusion Bubble Model; IRM de diffusion; modélisation fondée sur le spectre;
segmentation par diffusion seule; développement cérébral néonatal; lésions ponctuées de la
substance blanche; caractérisation des lésions.
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ABSTRACT

Preterm birth (≈ 10% of live births) exposes the neonatal brain to a high risk of injury and
long-term disability, creating an urgent need for microstructural biomarkers that are both
biologically specific and clinically feasible. Diffusion magnetic resonance imaging (dMRI) is
well suited to this task, yet conventional tensor models conflate diverse processes into a few
averages, whereas many spectrum-based approaches require lengthy, motion-sensitive scans
that are impractical in neonatal care.

This dissertation introduces the Diffusion Bubble Model (DBM), a spectrum-based frame-
work that reconstructs the isotropic diffusion spectrum and yields compact, interpretable
metrics beyond tensor averages. DBM minimizes orientation dependence and localizes change
along the diffusion axis, distinguishing fast water tail fluctuations from shifts of the tissue-
dominated peak. Validated in simulations and in vivo across 248 neonates (moderate-late
preterm to 43 weeks postmenstrual age), DBM aligns closely with established scalar metrics
while adding spectral localization that reveals tissue-specific fingerprints and age-dependent
shifts.

To enable deployment when structural MRI is missing or unusable, DBM is paired with
a diffusion-only nnU-Net, delivering an end-to-end, dMRI-native workflow. The diffusion-
only model achieves strong internal accuracy and more stable cross-site generalization than
T2-weighted baselines, enabling inclusion of 14/88 (16.0%) infants without usable T2w in
downstream analyses and supporting large-scale, harmonized studies.

Two applications demonstrate biological and clinical utility. For developmental assessment,
preterm and term trajectories are broadly parallel but time-shifted, indicating a delayed onset
of maturation with residual immaturity concentrated in frontal and temporal pathways at
term-equivalent age despite volumetric catch-up. For injury characterization, DBM separates
punctate white matter lesions into edema-dominant (“wet”) and reorganization-dominant
(“dry”) phenotypes that appear similar on tensors and structural MRI, providing mechanistic
specificity relevant to monitoring and prognosis.

In conclusion, this work establishes DBM as a practical, biomedically interpretable approach
that moves beyond scalar averages to reveal where maturation and pathology manifest within
the diffusivity spectrum, advancing diffusion-based segmentation, developmental assessment,
and injury characterization in neonatal dMRI.

Keywords: Diffusion Bubble Model; diffusion MRI; spectrum-based modeling; diffusion-
only segmentation; neonatal brain development; punctate white matter lesions; injury char-
acterization.
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CHAPTER 1 INTRODUCTION

1.1 Background

Preterm birth (gestational age, GA < 37 weeks, Fig. 1.1) complicates approximately 10% of
live births worldwide (roughly 13.4 million annually) and remains a leading cause of long-
term neurodevelopmental disability [1]. This challenge is also evident in Canada, where the
rate of preterm birth has shown a concerning upward trend, despite a slight overall decrease
in the total number of births over the past three decades (Fig. 1.2), underscoring the grow-
ing need for effective early-life biomarkers. While survival is high among moderate-to-late
preterm infants (32−37 weeks GA), around 20% exhibit cognitive impairment and 30% have
behavioral difficulties that persist into school age [2,3]. These adverse outcomes are believed
to stem, in part, from disruptions in gray and white matter maturation during the critical
third trimester—a period marked by rapid axonal organization, accelerating myelination, and
significant shifts in extracellular water content [4].

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
TEA Weeks

Extremely Very Moderate Late Early Full Late Post

Preterm Term

Third trimester till birth

Figure 1.1 Timeline of neonatal age terms used in this thesis. Horizontal axis shows ges-
tational age (GA) and post-menstrual age (PMA) in weeks before and after birth. Shaded
bands mark commonly used ranges; the third trimester spans from 28 week GA till birth age.
Term-equivalent age (TEA) is ≈ 40 week PMA.

Punctate white matter lesions (PWML) are the most common focal injuries observed on
neonatal magnetic resonance imaging (MRI) [5]. Although typically small (< 5 mm) and of-
ten clinically silent in the nursery, PWMLs have been associated with later motor delay and
network-level functional alterations [6, 7]. Histopathology and advanced MRI indicate het-
erogeneous substrates for punctate white matter lesions—including microscopic hemorrhage,
gliosis, and oligodendroglial dysmaturation [8]. This underlying biological heterogeneity is
mirrored by its variable appearance on conventional MRI, as illustrated in Fig. 1.3. For
example, a single PWML can present with a distinct “exclamation-mark” shape on T1-
weighted imaging, appear fragmented on T2-weighted imaging, and manifest as only a focal
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abnormality on mean diffusivity maps. This underlying heterogeneity complicates prognostic
assessment when relying solely on conventional structural imaging, motivating the search for
tissue-specific diffusion biomarkers that can capture both global maturation and subtle focal
injury at term-equivalent age (TEA, ≈40 wk postmenstrual age, PMA).
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Figure 1.2 Total births and preterm birth rate in Canada (1990–2023). Despite a slight overall
decrease in the total number of births over the period (a), the rate has steadily increased,
reaching 8.3% in 2023 (green line) (b). Reference lines show 2020 global benchmarks: 9.9%
average (dotted gray), 13.2% highest (dot-dashed gray), and 6.8% lowest (dashed gray). Raw
preterm birth rate in Canada is from Statistics Canada [link]. Global preterm birth rate in
2020 is from publication [1].

Diffusion MRI (dMRI) can probe neonatal microstructure, provided acquisition and model-
ing are tailored to the rapidly evolving neonatal brain [9–12]. However, many established
microstructural models were developed for adult populations, relying on assumptions of long
scan times, high signal-to-noise ratio (SNR), and stable tissue composition, conditions rarely
met when imaging a restless newborn in a clinical 3T scanner. In addition, classic tensor met-
rics conflate concurrent shifts in slow and fast diffusion, limiting specificity to developmental
and injury-related processes.

To address these limitations, this thesis introduces a framework that uses data that are
scanned in clinical environment, a segmentation method suitable for dMRI, with proposed
Diffusion Bubble Model (DBM). DBM adjusts apparent anisotropy to approximate an isotropic
signal and decomposes it into a continuous diffusivity spectrum, yielding positional (e.g.,
quartile diffusivity) and shape (e.g., mean diffusivity) metrics. We test the hypothesis that
this protocol-plus-model pipeline improves sensitivity and specificity to brain maturation and
PWML-related change compared with conventional diffusion tensor imaging (DTI) at TEA.

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310042501
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(c) PWML on MD map

Figure 1.3 Visualizing the challenge: heterogeneous appearance of a punctate white matter
lesion (PWML) in optic radiation across conventional MRI modalities. (a) T1-weighted MRI
demonstrates a hyperintense “exclamation-mark” configuration (dot+streak) along the right
OR. (b) On T2-weighted MRI the lesion is less conspicuous, with a larger gap between the
dot and the linear component. (c) The mean diffusivity (MD) map depicts only an enlarged
dot of reduced diffusivity, missing the lesion’s full structure. This variability complicates
diagnosis and underscores the need for more consistent biomarkers. Figure generated from
our PWML cohort and created by author.

1.2 Research Framework

1.2.1 Research objective

The overall objective is to develop and validate a clinically feasible diffusion MRI framework
to characterize neonatal brain maturation and injury in preterm and term infants. Specifi-
cally, we aim to:

1. Model development: Develop and validate a spectrum-based diffusion MRI model to
characterize neonatal brain tissue and microstructures.

2. Segmentation framework: Develop and validate a dMRI-driven segmentation pipeline
for neonatal brain structures when structural MRI data is unavailable for segmentation.

3. Developmental application: Apply DBM and segmentation developed to quantify re-
gional maturation trajectories from late-preterm to term-equivalent age.

4. Lesion application: Apply DBM proposed to characterize PWML microstructure by
comparing lesion, contralateral, and term-control and evaluate spectrum reshaping.
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1.2.2 Research questions

Technical Questions

1. Can a spectrum-based diffusion model (DBM) provide added specificity beyond DTI
by localizing changes along the diffusivity axis using positional and shape metrics (e.g.,
quartile diffusivities D25,50,75, spectral moments MDDBM, σ2

DBM)? (primarily Chapter 4)

2. Does a diffusion-only nnU-Net segmentation pipeline generalize more reliably across
scanners and protocols than a T2w-based baseline, enabling robust dMRI-native region
of interest (ROI) definitions for downstream quantification? (Chapter 5)

Clinical Questions:

1. At term equivalent age, how similar are regional and global brain microstructural mea-
sures in infants born preterm to those in term-born controls?(Chapter 6)

2. Do neonatal punctate white matter lesions show detectable microstructural alterations
within the lesion relative to contralateral tissue and term controls? (Chapter 7)

1.2.3 Research hypotheses

Normal maturation and many neonatal injuries involve concurrent shifts in slow and fast
diffusion that classic tensor metrics tend to conflate. DBM aims to separate these processes
by estimating an isotropic diffusivity spectrum. We hypothesize that:

1. H1 (DBM added specificity): Compared to DTI, DBM yields larger effect sizes and
stronger age associations by localizing changes along the diffusivity axis. (addressed
primarily in Chapter 4)

2. H2 (Segmentation generalization): A diffusion-only nnU-Net exhibits smaller
external-validation performance drops than a T2w-based model under vendor/protocol
shift (non-inferiority in Dice and boundary metrics). (Chapter 5)

3. H3 (Preterm maturation: timing vs. rate): From late-preterm to term-equivalent
age, preterm–term differences are explained primarily by a timing shift (delayed onset)
rather than persistently different rates of maturation; and DBM can capture these
residuals more sensitively than DTI. (Chapter 6)

4. H4 (PWML characterization): PWMLs perturb the fast-diffusion fraction and
reshape the isotropic spectrum within the lesion, DBM can detect and characterize
these changes. (Chapter 7)



5

1.3 Framework of Thesis

This thesis is structured around a central narrative of methodological innovation driving
biomedical and clinical discovery (Fig. 1.4). It presents a cohesive journey that begins with
the creation and rigorous validation of a novel analytical model (Chapter 3 & Chapter 4),
continues with the development of an essential tool to maximize its utility (Chapter 5),
and culminates in its application to resolve fundamental questions in both typical brain
development and injury (Chapter 6 & Chapter 7).

To achieve the general objective of developing and validating a clinically feasible diffusion
MRI framework to characterize neonatal brain maturation and injury, the thesis is organized
as follows:

1. Chapter 1 establishes the clinical and technical context and states the research ques-
tions and hypotheses.

2. Chapter 2 reviews the relevant literature on diffusion MRI (dMRI) models, preterm
versus term infant brain development, characterization of punctate white matter lesions,
and strategies for segmentation of the neonatal brain.

3. Chapter 3 introduces the proposed Diffusion Bubble Model (DBM) and the general
methods used to address the four primary research goals.

Figure 1.4 Overall logical framework of thesis result chapters. The framework begins with the
creation and rigorous validation of a novel analytical model (Result 1: Chapter 4), continues
with the development of an essential brain segmentation tool to maximize its utility (Result
2: Chapter 5), and culminates in DBM application to resolve fundamental questions in both
typical brain development and injury (Result 3: Chapter 6, and Result 4: Chapter 7).
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The logical progression of the four result chapters is as follows:

• Chapter 4 validates the fundamental tool. It quantitatively validates Diffusion
Bubble Model we introduced, a novel spectrum-based dMRI framework designed for
the specific constraints of neonatal imaging. This chapter answers the critical question:
“Is the model itself reliable, robust, and capable of capturing biologically meaningful
information?”

• Chapter 5 builds an essential brain structure segmentation tool to maximize
the utility of data for this model. To deploy DBM on large-scale and clinically hetero-
geneous datasets, a major practical bottleneck must be overcome: the frequent absence
of high-quality structural scans for tissue segmentation. This chapter develops and val-
idates a diffusion-only deep learning-based segmentation tool, allowing the application
of advanced microstructural models to a broader range of clinical data.

• Chapter 6 resolves a core biological question. Armed with a validated model
(DBM) and a robust segmentation tool, the thesis transitions to application. This
chapter investigates a central controversy in developmental neuroscience: the nature
of microstructural differences in preterm infants at term age. It leverages the spectral
specificity of DBM to empirically distinguish between a simple “timing shift” and a
persistent “rate difference” in maturation.

• Chapter 7 targets a specific clinical challenge. Finally, the analytical power of
DBM is focused on a common and precise form of neonatal brain injury—Punctate
White Matter Lesions. This chapter goes beyond macroscopic description to provide a
quantitative microstructural phenotyping of lesions, demonstrating the clinical trans-
latability and superior sensitivity of the proposed framework.

Finally, Chapter 8 synthesizes and contextualizes the findings—positioning DBM within dif-
fusion modeling, outlining clinical feasibility, limitations, and future directions—while Chap-
ter 9 provides a concise summary of contributions and overarching implications.
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CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Neonatal brain development is fast, heterogeneous, and clinically consequential. This re-
view establishes the methodological and biological background for the thesis by integrat-
ing four strands: (i) diffusion MRI (dMRI) models; (ii) preterm versus term differences at
term-equivalent age (TEA) from both volumetry and diffusion perspectives; (iii) punctate
white-matter lesions (PWML) as focal disruptions superimposed on network-level matura-
tion; and (iv) segmentation strategies that underpin region- and tract-level analyses.

We begin by introducing the biophysical sources of the dMRI signal and organizing models
into major categories, with particular attention to spectrum-based approaches. Then we
summarize the maturation patterns of the neonatal brain throughout late gestation to term-
equivalent age. Next, we define punctate white matter lesions and review dMRI study on
this lesion. Then, methodologically, we review traditional (manual, atlas- and model-based)
and deep learning segmentation approaches, including diffusion-native pipelines that operate
directly in DWI space. This context motivates the thesis strategy: a dMRI-focused pipeline
and spectrum-informed modeling to characterize neonatal microstructure when structural
scans are limited or unavailable.

2.2 Diffusion Magnetic Resonance Imaging Models

This thesis addresses two neonatal problems: (i) quantifying developmental differences be-
tween brain tissues and structures (e.g., preterm versus term at TEA), and (ii) characterizing
how punctate white matter lesions perturb otherwise typical tissue. Overall diffusivity alone
is ambiguous; both maturation and pathology can shift it in overlapping ways. A voxel-
wise distribution of diffusivity (the diffusion spectrum) offers greater discriminative power
by revealing changes in location, width, and tails (fast or free-water versus restricted com-
ponents) [13, 14].

Most diffusion-MRI models approach this in one of two ways: they either reconstruct this
distribution explicitly (e.g., diffusivity spectra or displacement propagators) or summarize
it implicitly through moments or parametric surrogates (e.g., kurtosis, stretched-exponential
α, diffusional variance) [13–16]. Below, we evaluate both families through a neonatal lens:
weighing biological specificity against acquisition feasibility, and identify the features a spec-
trum method must have to serve our aims in development and PWML.
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Biophysical sources and practical constraints

Brain tissue comprises multiple microstructural constituents: neuronal soma and dendrites,
axons that are covered with / without myelin, glial cells, vasculature, and extracellular
space [17, 18]. The axonal calibers span roughly 0.2–20 µm, and individual axons can ex-
tend from several millimeters to more than a meter in length [19]. Typical in-vivo diffusion
MRI uses 1–2 mm isotropic voxels, whereas water displacements over clinically practical dif-
fusion times (∆ ≈ 30–80 ms) are on the order of only a few to ∼ 10 µm (≈

√
2D∆ with

D ∼ 0.7–1.0 µm2/ms) [20–22]. This large-scale mismatch means that each voxel averages
signal from an enormous number of distinct microenvironment (multiple cell types, sizes, ori-
entations and extracellular compartments), for example, order-of-millions times the volume
of a typical soma. Consequently, the measured signal is an ensemble average of diffusion
processes, rather than a readout from a single structure.

These biophysical realities, coupled with practical acquisition limits: finite gradient strength
and limited achievable b value and diffusion times, echo-time and signal noise ratio (SNR)
constraints, motion sensitivity (especially in neonates), and Echo-planar imaging (EPI) re-
lated distortions, make direct imaging of single cellular components infeasible in routine
dMRI. Modeling therefore trades biological specificity against data demand and robustness.

Aims of dMRI Modeling

A dMRI model should convert voxelwise DWI signal decays into descriptors that are (i)
biologically meaningful, (ii) stable and reproducible, and (iii) practical for clinical or re-
search use. Objectives include: (i) Compartmental characterization: Separate broad mi-
crostructural compartments (e.g., intra-axonal, extra-axonal, free water) and estimate their
volume fractions and other diffusion properties (e.g., apparent diffusivity, exchange rates).
(ii) Orientation-resolved architecture: Recover the shape and orientation dispersion of anisotropic
structures (e.g., fiber orientation distributions, crossing fibers) and, when possible, derive
tract- or fiber-specific metrics. (iii) Non-Gaussianity and heterogeneity: Capture deviations
from mono-exponential (Gaussian) diffusion caused by restriction and hindrance, either via
explicit diffusivity spectra / propagators or implicit parameters (e.g., kurtosis, stretched-
exponential parameters). (iv) Scale specificity: Leverage contrasts that vary with the acqui-
sition scale (e.g., b value, diffusion time or frequency, coupling to T1 and T2) to gain sensitivity
to microstructural size and time scales without overfitting. (v) Biomarker utility: Provide
interpretable metrics that correlate with development, disease, or treatment response and
exhibit strong effect sizes, repeatability of test-retest, and robustness between scanners, pro-
tocols, and sites. (vi) Practicality and robustness: Remain identifiable at clinically feasible
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SNRs and scan times; minimize fragile hyper-parameters; and expose uncertainty and quality
control indicators to guard against implausible estimates.

We seek methods that: run at moderate b and short scans; provide information beyond DTI
(e.g., distinguish fast water vs. restricted changes and capture shape shifts, narrowing, tail
inflation); remain informative in low-FA tissues (cortex, deep GM); and are robust across
sites with clear assumptions.

2.2.1 Diffusion MRI model categories

Diffusion-MRI methods can be organized along several axes (acquisition, reconstruction,
mathematical form). Here we use a representation-centric taxonomy because it best high-
lights how models capture microstructural heterogeneity. We group the methods into three
families (Table 2.1), noting that hybrids exist and some methods straddle categories [23,24].
When models span families, we place them with their predominant assumption.

Table 2.1 Different category of dMRI models. Statistical model is also named signal rep-
resentation model. Note: Black color: general diffusion, red color: isotropic diffusion, blue
color: anisotropic diffusion.

Category: Definition Models
Statistical model: Empirically
capture signal shape without
explicit tissue assumptions

DTI [16] e−bkgT
k Dgk

Stretched-
exponential [14]

e−(b×DDC)α

DKI [15] e
−b

∑3
i,j=1

Dijgigj+ 1
6 b

2D2
avg

∑3
i,j,k,l=1

Wijklgigjgkgl

Multi-compartment model:
Represent tissue as a small set
(≤ 4) of predefined compartments

FWE [25] (1− fiso)e−bkgT
k Dgk + fisoe−bkDiso

NODDI [26] fic · e−bDic(θ·n)2 ·Watson(κ) + fec · e−bDec + fiso · e−bDiso

SANDI [17] fneurite · e−bneurite + fsoma ·
(

sin(qa)
qa

)2
+ fec · e−bDec

Spectrum model: a continuum
of components spanning a range
of diffusivity, or ≥ 5 compart.
with clear diffusion scale order)

DSI [13] S(q, ∆) =
∫

P (R, ∆)e−2πq·Rd3R
DBSI [27]

∫ b
a

f(D)e−|bk|DdD +
∑NAni

i=1 fie
−|⃗bk|λ⊥ie−|bk|(λ∥i−λ⊥i)·cos2 ψik

RSI [28]
∑M
i=1 fDi

e−bDi

DBM [24]
∑M
i=1 fDi

e−bkgT
k Digk +

∑N
j=1 fDj

e−bkgT
k Djgk + ϵk

1. Statistical (signal-descriptive) models empirically reproduce the diffusion-weighted imag-
ing signal without explicit microstructural assumptions. Classic examples include DTI,
the stretched-exponential model, and DKI, whose compact parameterizations (e.g.
mean diffusivity, kurtosis) are simple but biologically nonspecific [14–16].

2. Discrete multi-compartment (biophysical) models represent each voxel as a weighted
sum of a small set of predefined tissue pools, typically ≤ 4 (e.g., intra-axonal, extra-
axonal, free water). FWE, NODDI, and SANDI fall into this category [17,25,26]. Their
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parameters, volume fractions, and compartment-specific diffusivities, are more directly
interpretable, but the fixed, low-dimensional compartment set may be overly restrictive
in complex tissues [29].

3. Spectrum-based (continuous) models extend compartmentalization to either a mathe-
matical continuum or a larger discrete set (≥ 5) ordered by diffusivity or restriction
scale [24]. DSI, DBSI and RSI–and our DBM introduced later belongs here–exemplify
this family [13, 27, 28]. By allowing a continuous or high-resolution spectrum, these
models can accommodate intricate lesion microstructure, but they demand denser q-
space sampling or invoke regularisation to stabilise fitting.

2.2.2 Explicit spectrum models

Diffusion Spectrum Imaging (DSI)

What it estimates: DSI densely samples the diffusion signal on a Cartesian grid in q-space
and uses the Fourier relationship to reconstruct the ensemble average propagator (EAP, the
full 3-D displacement distribution) at each voxel [30]. From the EAP, orientation information
(e.g., ODFs) and distribution-shaped scalars can be derived [31–33]. The main advantage is
precisely this recovery of the full 3-D diffusion spectrum or EAP (not just angular features),
which helps resolve complex fiber configurations.

Why it matters for a spectrum view: It is a canonical example of an explicit distribution
method: instead of summarizing in moments, DSI recovers the underlying distribution itself.

Neonatal feasibility: Classic DSI requires dense Cartesian q-space sampling (typically
102–515 gradient directions) and high b-values (6000–12000 s/mm2), leading to scan times
> 35 min, which is impossible to routine neonatal imaging [13, 34]. Several variants have
been developed in the past, but their acquisition burden still limits routine clinical adoption
[34–36]. Thus, it could be a conceptual benchmark but not suitable for our cohort of neonatal
scans.

Diffusion Basis Spectrum Imaging (DBSI)

What it estimates: DBSI models each voxel as a linear combination of multiple anisotropic,
axially symmetric tensors (for oriented axonal populations) plus a continuous set of isotropic
diffusion tensors [27,37]. It explicitly defines an isotropic diffusivity spectrum and partitions
it into restricted and non-restricted components. The anisotropic part enables tractography,
while the isotropic part quantifies restricted versus hindered isotropic signal fractions [27].
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Why it matters for a spectrum view: DBSI’s isotropic part is an explicit f(D) es-
timate. To our knowledge, DBSI explicitly estimated and plotted the isotropic diffusion
spectrum (the voxelwise f(D) “spectrum curve”) and showed differences between injury and
control [27]. However, most studies summarize spectrum information using threshold bands
(e.g., “restricted” versus “non-restricted”), which is practical but introduces cut-point vari-
ability across studies. In practice, many reports use 0.3 µm2/ms to separate “restricted” from
“non-restricted” [38], but other thresholds also appear in the literature, complicating stan-
dardization (e.g., boundaries near 0.10 µm2/ms) [38–40]. In addition, DBSI first estimates
multiple anisotropic tensors and then subtracts their contribution to recover the isotropic
part [27]; inaccuracies or model mismatch in those initial tensor fits can propagate and
destabilize the isotropic spectrum [41].

Neonatal feasibility: DBSI has been demonstrated with compact, 99-direction and 25-
direction schemes in coherent white matter tracts (e.g., optic nerve), with histologic validation
[37]; this clinical implementation is sometimes referred to as neuro-inflammation imaging [42].
Broader use of the whole brain for neonatal use is currently limited by software availability
and threshold conventions.

DBSI has been used to detect and distinguish axonal injury, demyelination, and inflammation
in multiple sclerosis animals and patients [38,43]; to characterize spinal cord compression [44];
and as an adjunct to the evaluation and progression evaluation of brain tumors [41]. But most
of the applications were limited to the related labs [23], and also the reliance on thresholding
has to be decided.

Restriction Spectrum Imaging (RSI)

What it estimates: RSI was introduced as a multi-scale framework with oriented response
functions whose axial diffusivity is fixed while radial diffusivity varies across a continuum
of restriction scales (spectrum), and report rotation-invariant metrics [25]. Recent RSI ap-
plications used a small and fixed set of compartments (≤ 5) and required a collapse of all
measurements within the same b-shell into an averaged value before fitting, which removes
direction-specific signals and limits the spatial resolution of the spectrum [28,45].

Why it matters for a spectrum view: RSI’s roots are continuum-based; in practice,
its compact implementations act like semi-continuous/implicit spectrum surrogates that dis-
tinguish restricted versus hindered pools without plotting an explicit f(D). We listed this
model as a spectrum model; In addition to its original continuous diffusion map, in their
recent publication, the RSI with 5 compartments also showed the left shift restriction phe-
nomenon [28].
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Neonatal feasibility: RSI is strong in tissues with low anisotropy (cortex, deep GM) and
has been implemented at moderate b values [46, 47], making it attractive for developmental
applications and conditions where FA is modest; large cohorts have reported age-related
effects using its metric maps [46, 47]. However, many clinical implementations, especially in
oncology and prostate magnetic resonance imaging, are based on relatively high values of b

values (often b ≥ 3000 s/mm2 and up to 4000–6000 s/mm2) to improve the contrast between
restricted units [48–50]. This trade-off (higher b for specificity versus SNR and scan-time
limits) is an important consideration for neonatal imaging.

2.2.3 Implicit spectrum models

Stretched-Exponential Model (SEM)

What it summarizes: SEM models the diffusion-weighted signal as S(b) = S0e
−(bDDC)α [14].

DDC is the distributed diffusion coefficient and 0 < α ≤ 1 is a heterogeneity index that
summarizes the breadth of intravoxel diffusion rates. Lower α refers to broader hetero-
geneity [14, 51, 52]. This is an implicit spectrum, which is mathematically equivalent to a
continuous superposition of monoexponentials without reconstructing f(D) explicitly [14,51].

Why it matters for a spectrum view: SEM gives voxel-wise heterogeneity α and central
tendency DDC, so diffusion shift, broadening or narrowing with development and lesions can
be tracked, even in low-FA tissue.

Neonatal feasibility: Works with multi-b data at moderate b (often ≤ 2000− 3000 s/mm2)
[14, 53–55]; direction-light and robust in cortex and deep GM [52–56]. Manage high-b SNR
when pushing beyond clinical b values [53].

Statistical model for diffusion-attenuated MR signal

What it summarizes: The signal is a superposition of exponentials with a continuous
diffusivity distribution P (D) (S(b) =

∫ ∞
0 P (D) e−bD dD) [29]. Rather than inverting P (D)

nonparametrically, these models assume a functional form (e.g., Gaussian or Gamma) and
estimate parameters such as peak, mean diffusivity and distribution width [29].

Why it matters for a spectrum view: Provides shape information (spread, skew) and
band-wise fractions that can map to maturation (narrowing and left-shift) and PWML
(broadening and left-shift), while staying data-efficient. In vivo brain data acquired over
b up to ≈ 2000 s/mm2 were well described by this model, with a substantial width (≈ 36%
of ADC) across regions; it also accounts for biexponential fits as special cases [29].
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Neonatal feasibility: Moderate multi-b requirements; performance depends on the assumed
P (D) and SNR. Transparency about priors/cutoffs is essential for cross-study use.

2.2.4 Conclusion of dMRI Model review

Based on the review, several patterns emerge. (i) The explicit spectrum approaches align
closely with the objective of describing an underlying distribution. However, they either
require data beyond typical neonatal protocols (e.g., dense q−space, high b values, or long-
time scans) or rely on threshold choices that complicate cross-study comparability. (ii) The
implicit spectrum approaches offer feasible and robust summaries of distribution shape on
moderate multi-shell data, particularly in low-FA neonatal tissue, but they do not reconstruct
f(D) and can blur spectral detail. (iii) Spectrum-oriented variants have been customized for
body imaging [57], prostate [28, 58, 59], breast [60], and musculoskeletal applications [61].
However, no neonatal-feasible and safety-conscious implementation tailored to the immature
brain has been reported. (iv) A further limitation is the transfer of adult WM priors to
infants [62]. Many advanced models are calibrated in tissues with high FA, whereas in new-
borns they cannot meet due to the high free water fraction. Applying adult-tuned parameters
can bias compartment fractions and mask subtle effects of maturation or injury.

Implication for this thesis For neonatal development, we need reproducible isotropic read-
outs that indicate where along the diffusivity axis changes occur without heavy acquisitions.
For PWML, we need edema versus restriction disentanglement and quantification of spec-
trum shape (shift, width, tails) without fragile thresholds. These motivate a spectrum-based
approach tailored to neonatal data—introduced in the next chapter.

2.3 Preterm vs. Term at Term-Equivalent Age: Volumetry and Diffusion MRI

2.3.1 Volumetry from birth to TEA: catch-up and residual gaps

Across the third-trimester window, preterm-born infants undergo substantial increases in
brain volume, yet growth is tissue-specific and only partially closes the gap with term controls
by term-equivalent age (TEA).

Absolute growth Total brain volume (TBV) rises steeply from birth to TEA. Longitudinal
segmentation shows the fastest expansion in cortical gray matter (11.94 ± 2.1 mL/wk) and
the cerebellum (CB; 1.76 ± 0.3 mL/wk), with more modest gains in unmyelinated white
matter (6.51 ± 1.3 mL/wk) and deep gray matter (Deep GM; 1.05 ± 0.2 mL/wk) [63]. CSF
(5.77 ± 1.9 mL/wk) can also increase as sulcation deepens, underscoring parallel changes in
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tissue and extra-axial compartments [63].

Changing tissue proportions As a fraction of intracranial volume, cerebellum, cortical GM
and CSF typically increase between birth and TEA, whereas unmyelinated white matter
and deep GM fractions decline—consistent with rapid cortical expansion and compartmental
remodeling during late gestation [63, 64].

Ex utero versus in utero velocity Across the cerebrum, cerebellum and brainstem, postnatal
growth rates during the third trimester are generally lower than in utero trajectories, arguing
for partial rather than complete catch-up by TEA [65].

Hemispheric asymmetry At birth, cortical GM and deep GM volumes tend to be relatively
larger on the left and unmyelinated WM larger on the right. By TEA, most tissue asymme-
tries attenuate, and unmyelinated WM asymmetry is more likely to persist than cortical GM
and deep GM asymmetries [63].

Modifiers of growth Lower gestational age at birth is associated with slower neonatal growth,
most clearly for CGM and CB, and with smaller lobar volumes and larger CSF beyond the
neonatal window (around 12 months), following a frontal > parietal > temporal > occip-
ital gradient [66]. Selected perinatal morbidity further dampens growth trajectories. The
evidence for sex differences in absolute size (e.g., larger TBV and WM in males, proportion-
ally more CGM in females) is fairly consistent, whereas sex-specific growth rates within the
neonatal window remain mixed [63,66,67].

Links to outcome At TEA, smaller volumes of total brain tissue, cerebrum, frontal lobes,
basal ganglia, thalamus and cerebellum are often seen in infants with neurodevelopmental
impairments [68]. Several studies report that larger TBV, WM and CB at TEA, and steeper
birth-to-TEA gains, relate to better early motor and cognitive outcomes [69,70]; conversely,
smaller cerebellar volumes have been linked to poorer neurological performance at 2 years’
corrected age [68]. However, other cohorts find attenuated or nonsignificant associations
after adjustment for perinatal and socio-environmental covariates, highlighting heterogeneity
in effect sizes and model specification [71].

These patterns provide a mechanistic backdrop for the residual TBV and regional volume
gaps frequently observed when preterm cohorts are compared with term-born peers at TEA,
and they motivate careful adjustment for GA and clinical covariates when quantifying “catch-
up”. Reference ranges at TEA synthesized across cohorts can aid interpretation of absolute
and relative tissue volumes [64].
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2.3.2 Diffusion MRI from birth to TEA: DTI consensus and model-based speci-
ficity

Preterm birth remains a major global health burden and motivates sensitive imaging mark-
ers of early-life brain development [72–74]. We summarize TEA-stage group contrasts and
prognostic evidence in preterm cohorts in Table 2.2, and we assemble model-focused neonatal
dMRI studies that clarify dispersion versus density, deep GM sensitivity, and fibre-population
localization without requiring an explicit preterm–term contrast in Table 2.3.

Developmental context The development of white matter begins in mid-gestation with
limbic, projection, and commissural pathways, followed by thalamocortical and association
systems between 24 to 32 weeks, and accelerates during the first two postnatal years [75].
Histology describes a sequence of axon outgrowth, synaptic overproduction and pruning,
pre–myelination, and myelination, providing a cellular substrate for diffusion-derived trajec-
tories [75]. During 30 to 45 weeks of PMA, diffusion MRI typically shows decreases in MD
and increases in FA in the major tracts, consistent with axonal packing and premyelinating
changes, while sensitive metrics of myelin (e.g. T1/T2, fraction of myelin water) increase
rapidly in early childhood [76–78]. Classical neuroanatomy and infant magnetic resonance
imaging converge on a posterior to anterior gradient: the occipital and central systems mature
earliest, the parietal follows, and the cortices of the frontal and anterior temporal association
lag; cortical microstructural trajectories mirror this gradient [77–80].

DTI consensus at TEA (evidence base in Table 2.2) Across multiple cohorts, preterm
infants scanned at TEA exhibit lower FA and higher diffusivities in PLIC, corpus callosum
and association pathways relative to term controls, supporting a dysmaturation account
rather than focal loss [81–83]. PLIC FA at TEA stratifies abnormal 18–24-month outcomes
in low-birth-weight infants, highlighting the sensitivity of early-myelinating tracts [84]. Tract-
Based Spatial Statistics (TBSS) analysis shows widespread white matter skeleton effects and
relate neonatal FA and RD patterns to 18-month motor and cognitive performance, though
effect sizes and covariate robustness vary across studies [81, 85]. Tract-specific development
within the corpus callosum scales with gestational age at birth at TEA [86]. Sex differences
in tracts at TEA also associate with two-year outcomes in some cohorts [87].

PMA-dependent trajectories Across late gestation, FA typically increases and MD and
RD decrease with PMA, reflecting ongoing axonal packing and early myelination; tract profil-
ing shows asynchronous maturation across corticospinal, callosal, limbic, and visual pathways,
with additional modulation by gestational age and sex [88]. Normative diffusion and NODDI
maps in term infants around one month of age provide a useful reference frame for interpreting
TEA findings under unsedated protocols and heterogeneous acquisition settings [89].
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What model-based diffusion adds (study details in Table 2.3)

Compartment models (NODDI) In preterm infants scanned longitudinally between the preterm
and TEA time-points, cortical FA decreases while orientation dispersion index (ODI) in-
creases and viso decreases, whereas thalamic vi increases, indicating that much of the cortical
FA change is driven by rising orientation dispersion rather than reduced neurite content and
that deep GM shows increasing tissue packing not separable by tensor metrics [90]. Cross-
sectionally at TEA, cortex-wise NODDI reveals lower neurite density index (NDI) and higher
tissue water in preterm cohorts relative to term controls, with posterior > anterior gradients
and limited outcome associations after stringent covariate adjustment [91]. A dHCP-style
analysis further reports regional NDI and ODI alterations in preterm infants at TEA, rein-
forcing a region-selective cortical signature of prematurity [92].

Kurtosis-derived models (DKI and WMTI) DKI demonstrates greater sensitivity than DTI
to maturation in deep GM (basal ganglia and thalamus) and periventricular WM at TEA,
with MK and RK reductions in preterm infants suggesting delayed microstructural devel-
opment [93, 94]. Building on these contrasts, WMTI and combined DT+KT multivariate
indices yield composite “maturity” scores that track PMA and early behavioral measures
more strongly than DTI alone [95].

Fibre-specific modelling (CSD and FBA) and connectomics Fixel-based analysis separates mi-
crostructural density (FD) from macrostructural cross-section (FC), localizing fibre-population
deficits at TEA beyond voxel-averaged tensor maps; in very preterm cohorts, FD/FC/FDC
are reduced relative to term and associate with 1–3-year motor and cognitive outcomes,
while perinatal risk factors often map preferentially to FC [96–98]. Structural connectome
work that integrates CSD with NODDI and FA weighting suggests relative preservation of
core long-range connections but vulnerability in thalamo-cerebellar and perisylvian systems,
aligning macro-scale topology with microstructural loadings [99]. Prognostic pipelines that
combine FBA metrics with connectomic features further indicate incremental value for clas-
sifying adverse outcomes in neonatal clinical cohorts [100].

Cortical diffusion and outcome Beyond the WM-centric view, neonatal cortical diffusion
microstructure carries predictive information: parcel-wise cortical FA at birth relates to
2-year cognitive and language scores, implicating frontal-parietal and limbic territories in
distinct behavioral domains [101]. In clinical term cohorts with congenital heart disease,
lower cortical ODI and higher FA covary with reduced cerebral oxygen delivery, consistent
with impaired dendritic arborization and demonstrating that dMRI-derived cortical metrics
can couple to physiology [102].

Infrastructure that enables reliable neonatal dMRI Reproducible inference of new-
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borns depends on motion-robust acquisition and reconstruction. The dHCP pipeline stan-
dardizes denoising, distortion correction, and multi-shell modeling, and a multi-tissue and
time neonatal diffusion template enables voxel- or fixel-wise group analyzes across PMA [62,
103]. SHARD reconstruction mitigates slice-wise motion and outliers in multi-shell HARDI,
improving downstream CSD, NODDI and FBA estimates [104]. SMSI offers orientation
invariant microstructural contrasts including µFA from spherical mean signal, showing fea-
sibility for mapping the neonatal brain [105]. Atlas resources covering 0− 3 months provide
age-specific diffusion maps and tract-level norms to contextualize cohort effects [106]. Finally,
high-angular tractography can resolve crossing - fiber systems and sub-bundles (e.g., SLF I,
II and III) even at birth, allowing finer-grain development comparisons [107,108].

Table 2.2: Diffusion MRI studies of preterm-born infants from birth to term-equivalent age
(Birth→TEA; study-centric). dMRI protocol column shows: X-tesla scanner (e.g., 1.5T, 3T),
number of distinct b-value shells (e.g., 2-shell, 3-shell), Total noncollinear diffusion-encoding
directions (e.g., 32-dir, 64-dir), b values (e.g., 32 b1000 means shell at b = 1000 s/mm2 with
32 diffusion-encoding directions). Region and ROI column lists the principal regions/tracts
and the ROI definition method (e.g., manual, tractography, TBSS/GBSS skeleton, atlas-
based). Main findings and outcome states key results and whether a longer-term outcome
was reported (YES/NO). Abbreviations: see list of symbols and acronyms.

No. Study Design & cohort dMRI protocol Region / ROI Main findings / Outcome

1 Arzouman.,
2003 [84]

63 low-birth-weight PT
at TEA; cross-sectional;
18–24 month follow-up

1.5T; DTI (6-dir,
b1000; ADC/FA)

Manual ROIs: whole
brain, CC, WM, PLIC

Lower PLIC FA at TEA
predicted abnormal neuro-
development at 18–24 mo
(YES).

2 Anjari,
2007 [81]

26 PT vs. 6 term
at TEA (mean 41.3 wk
PMA), cross-sectional

3T; DTI (15-
dir, b750); TBSS;
T1w/T2w

Centrum semiovale,
frontal WM, genu CC,
PLIC, EC

PT < term: FA↓/RD↑ across
widespread WM, (NO).

3 Hasegawa,
2011 [86]

PT at TEA (40 wk) in 3
birth-GA strata (cross-
sectional)

1.5T; DTI (15-dir,
b1000)

CC (tractography +
manual ROIs)

Posterior CC maturation varied
with birth GA (No follow-up,
NO).

4 Van
Kooij,
2011 [87]

PT at TEA (41 wk);
male (n=38) vs. fe-
male (n=29) (cross-
sectional); 2 y outcomes

1.5T; DTI (32-dir,
b800); tractography

Fiber tracking: CC,
PLIC

Sex-related tract differences
linked to 2 y motor/cognitive
outcomes; female-CC-cognitive
and motor and male left PLIC-
motor (YES).

5 Van Pul,
2012 [82]

89 PT at TEA
(41.7 wk); WMI scored
on T1w/T2w (cross-
sectional)

3T; DTI (32-dir,
b800; 4 metrics);
tractography

Fiber tracking: CC,
PLIC; WM injury
score

Higher WMI burden associated
with FA↓/diffusivity↑ in CC/-
PLIC at TEA (NO).

6 Liu,
2012 [83]

PT at TEA: 41 normal,
27 mild, 2 moderate
WMA (cross-sectional)

1.5T; DTI (32-dir,
b600)

Probabilistic tractog-
raphy: 15 major tracts
(incl. CC, internal
capsule)

Greater WMA associated with
tract-specific DTI abnormalities
(notably λ⊥) (NO).

Continued on next page
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No. Study Design & cohort dMRI protocol Region / ROI Main findings / Outcome

7 Duerden,
2015 [85]

75 PT at 32 wk, 78 PT
at 40 wk, 27 term at
39 wk; 18 mo follow-up

1.5T; DTI (12-dir,
b600/700); TBSS;
T1w/T2w

WM skeleton; CC From PT to TEA, FA showed
stronger associations with 18 mo
cognition; AD/RD (PT/TEA)
predicted motor outcome.

8 Pannek,
2018 [96]

PT at TEA with-
/without abnormality;
term at 40 wk (cross-
sectional)

3T; DTI (30-dir,
b1000) + CSD/FBA
(64-dir, b2000)

Multiple tracts: CC,
CST, association fi-
bres

PT at TEA < term:
FD/FC/FDC↓ (fibre-specific);
PMA at MRI and brain vol-
ume influenced microstructural
measures (NO).

9 Pannek,
2020 [97]

80 very-preterm at
TEA; Bayley-III at
1–2 y (cross-sectional)

3T; CSD/FBA (64-
dir, b2000)

CST, CC, long associ-
ation tracts

Fixel metrics at TEA associated
with 1–3 y motor/cognitive out-
comes (YES).

10 Dimitrova,
2021 [91]

76 PT at TEA (40.9 wk)
vs. 259 term; 18 mo
outcome tested (cross-
sectional)

dHCP protocol:
64 b400, 88 b1000,
128 b2600; cor-
tical NODDI +
quantitative MRI

DrawEM: 9 tis-
sues, cerebral cortex
(posterior>anterior
gradient)

Term: heterogeneous and re-
gionally specific associations be-
tween age at scan and mea-
sures of cortical morphology
and microstructure; PT: corti-
cal NDI↓, tissue water↑ with
deviations↑; limited associations
with outcomes after covariates
(Mixed/NO).

11 Zhao,
2021 [94]

26 PT at TEA vs.
26 term (40 wk) (cross-
sectional)

3T; DKI and DTI
(30-dir b1000/2000)

7 manual ROIs:
ALIC/PLIC, genu/s-
plenium CC, parietal
WM, thalamus,
lentiform nucleus

PT at TEA: MK/RK↓ (reflect-
ing deep GM maturity); DKI
more sensitive than FA/MD for
delayed maturation (NO).

12 Wang,
2023 [92]

73 PT at TEA (40 wk)
vs. 69 term; dHCP-
like processing (cross-
sectional)

3T; dHCP (64
b400, 88 b1000,
128 b2600); cortical
NODDI; GBSS

Cortex (JHU-neonate
registered), 26 cortical
ROIs

PT < term: regional specific
NDI/ODI alterations at TEA
(NO).

What is consistent, what is conditional Across methods, three patterns are well sup-
ported: (i) TEA-stage microstructural gaps in preterm cohorts, especially in early myeli-
nating projection and callosal pathways [81–83]; (ii) PMA-dependent maturation with FA↑,
MD↓ and NDI↑ but asynchronous across tracts [88, 89]; and (iii) model-specific sensitiv-
ity—NODDI clarifies dispersion versus density, DKI and WMTI heighten deep GM and
microstructural kurtosis contrasts, and FBA localizes fibre-population-specific effects with
outcome links [90, 93, 95, 97]. At the same time, associations with later outcomes attenuate
in some studies after rigorous adjustment for perinatal and socio-environmental covariates,
underscoring heterogeneity in effect sizes and model specification and the importance of
harmonized protocols and covariate frameworks [85,91].

Implications for this thesis From moderate-late preterm to TEA, neonatal brain growth
is steep, yet asynchronous. Preterm cohorts show partial catch-up with residual regional
gaps at TEA, consistent with dysmaturation rather than overt tissue loss. The metrics of
the diffusion MRI model refine the biological specificity and, in some cohorts, relate to early
motor and cognitive outcomes. Systemic, model-rich studies across the whole preterm brain
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remain limited.

Table 2.3: Diffusion MRI studies of neonatal brains (no explicit PT–term contrast as the
main analysis, model-focused). Notation and column conventions as in Table 2.2.

No. Study Design & cohort dMRI protocol Region / ROI Main findings / Outcome

1 Kunz,
2014 [109]

13 newborns (near
TEA), cross-sectional

3T; 6-shell (6
b50, 9 b250, 12
b700, 16 b1400, 20
b2500); NODDI,
CHARMED, DTI

DTI-TK: 20 man-
ual WM ROIs: CC;
PLIC/ALIC; EC;
periventricular cross-
roads

Feasibility of multi-
compartment models; compact
CC: FA↑, NDI/νin ↑, ODI↓;
posterior vs. anterior IC sep-
arable; late-maturing regions:
νin ↓, ODI↑ (NO).

2 Eaton-
Rosen,
2015 [90]

Preterm longitudinal
(12 preterm → 7 TEA;
two time-points)

3T; 2-shell (15 b750,
32 b2000); NODDI
(first time on PT),
DTI (histogram
of parameters in
regions)

Cortex; thalamus
(GM)

Cortex with PMA: FA↓, ODI↑,
viso ↓, vi ≈stable; thalamus:
vi ↑; dispersion-based interpre-
tation of FA; adds GM speci-
ficity (NO).

3 Kansagra,
2016 [110]

Neonatal encephalopa-
thy; scans at birth
(n=12) and ∼6 mo
(n=13) (longitudinal)

3T; 3-shell (b700,
b2000, b3000);
NODDI, DTI

Manual ROIs on FA:
major WM tracts
(ALIC/PLIC/CC/as-
sociations)

Early injury pattern in
ODI/NDI; NODDI tracked
maturation/repair beyond DTI
(NO).

4 Shi,
2016 [93]

35 PT at 33–44 wk
PMA, cross-sectional

3T; 2-shell (25 b1250
and b2500); DKI,
DTI

8 manual ROIs:
PLIC; CC (genu/sple-
nium); frontal WM
and GM; lentiform
nucleus; CR; deep
GM

MK tracked maturation; DKI
more sensitive than FA/MD in
deep GM; neonatal feasibility
(NO).

5 Dean,
2017 [89]

104 term ( 1 mo), cross-
sectional

3T; 3-shell (9 b350,
18 b800, 36 b1500);
NODDI, DTI

DTI-TK: major WM
tracts (atlas-based)

Normative neonatal NOD-
DI/DTI maps; asymmetric/re-
gional maturation patterns in
early age (NO).

6 Batalle,
2017 [99]

65 newborns at 25–
45 wk PMA; connec-
tomics with prema-
turity tested, cross-
sectional

3T; 2-shell (32
b750, 64 b2500);
CSD, DTI, NODDI;
connectome

CSD tractograhy:
whole-brain network;
thalami-cerebellar;
perisylvian

Regional differences in brain
maturation: deep GM shows
fastest developmental changes;
Multi-model network weighting;
core connections relatively pre-
served by birth GA; local sys-
tems vulnerable (NO).

7 Karmach.,
2018 [111]

Healthy (n=16, 38-
47 wk PMA) vs.
CHD (n=19, 37-41
wk PMA) neonates;
cross-sectional

3T; 2-shell (30
b1000, 30 b2000);
DTI, NODDI, non-
parametric GMM

Atlas-based ROIs: 22
WM tracts (associa-
tion/projection/cal-
losal)

All models tracked maturation;
GMM (e.g., RTOP/RTAP)
showed larger effect sizes for
CHD-related deviations vs.
DTI/NODDI; NDI increased
with age (NO).

8 Pecheva,
2019 [98]

50 very-preterm at
TEA; perinatal risk
factors

3T; single-shell (64
b2500); CSD, FBA

Fixel-wise WM
(whole-brain)

FBA disentangled micro- (FD)
vs. macro-structure (FC); FD
and FA corelated with GA at
birth; perinatal risks related
more to FC than FD (NO).

Continued on next page
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No. Study Design & cohort dMRI protocol Region / ROI Main findings / Outcome

9 Pietsch,
2019 [62]

dHCP cohort (n=113,
33–44 wk PMA); meth-
ods/resource

MSMT-CSD; multi-
tissue diffusion (1
isotropic and 2
anisotrpic compo-
nents)

Whole brain (voxel/-
fixel, diffuison atlas
was built)

Providing neonatal-specific
modelling/processing strategies;
Enables neonatal fixel-wise
analyses and atlas-building;
infrastructure for fiber-specific
metrics (NO).

10 Bastiani,
2019 [103]

dHCP processing
pipeline; methods/re-
source

Automated neonatal
dMRI pre-processing
(denoise, eddy/-
topup, distortion
corr.)

Whole brain
(pipeline)

Standardized pipeline; prereq-
uisite for robust NODDI/CS-
D/FBA in unsedated neonates
(NO).

11 Kelly,
2019 [102]

48 CHD vs. 48 healthy
term neonates, cross-
sectional

3T; 3-shell (dHCP
protocol); NODDI,
GBSS; CBF/O2

measures

Cerebral cortex
(GBSS-based)

Lower cortical ODI (and higher
FA) associated with reduced
cerebral oxygen delivery; den-
dritic arborization hypothesis
(NO).

12 Huynh,
2020 [105]

Methods/feasibility;
neonatal application;
Simulation and 2 sub-
jects (2 time-point scan
each), cross-sectional

3T; 3- to 21- shell
(b500 to b3000);
SMSI (orientation-
invariant indices
incl. µFA)

Whole brain
(WM/GM capable)

First neonatal application
of SMSI; SMSI provides mi-
crostructure contrasts beyond
tensor/kurtosis; neonatal-
feasible; b-shell contributions
to isotropic fraction noted;
Isotropic fraction volume bene-
fits more from b500 shell than
from b1000 (NO).

13 Fenchel,
2020 [112]

241 term (37–44 wk
PMA); cross-sectional
normative networks

dHCP-style multi-
shell; DTI, NODDI
features into cortical
profiles/MSN

Cerebral cortex
(surface-based)

Cortical morphometric–
microstructural profiles form
modules aligned with cytoar-
chitecture; posterior networks
strengthen with age (NO).

14 Ouyang,
2020 [101]

87 neonates (31.9–
41.7 wk PMA); cross-
sectional; 2 y follow-up

3T; single-shell DTI
(30-dir, b1000); cor-
tical FA on skeleton

Atlas registration:
whole-cortex parcels

Neonatal cortical diffusion mi-
crostructure predicted 2 y cog-
nitive/language outcomes; lobar
GM weights differently: frontal
and parietal ↔ cognitive out-
comes, frontal and limbic gyri ↔
language outcomes (Yes).

15 Kimpton,
2021 [88]

31 preterm; cross-PMA
(25–45 wk); 2 y outcome
subset

3T; 2-shell (32 b750,
64 b2500); NODDI,
DTI, CSD tractogra-
phy

Fiber tracking (CSD):
CST, fornix, OR, ILF,
callosal tracts

With PMA: FA↑/MD↓/NDI↑;
GA and sex effects on NDI;
asynchronous tract maturation
(NO).

16 Uus,
2021 [113]

dHCP resource; 40 PT
AND 140 term at TEA

3T; 3-shell (dHCP
protocol); multi-
channel atlas incl.
SMT-based µFA,
DKI, NODDI, DTI

Whole brain; WM
parcellations; tran-
sient WM regions

Neonatal 4D parametric at-
las (incl. µFA) enabling age-
resolved analyses; methods/re-
source (NO).

17 Christiaens,
2021 [104]

Motion-robust recon-
struction; cohort-scale
feasibility

3T; multi-shell
(dHCP); SHARD
scattered-slice re-
construction

Whole brain (recon-
struction), motion
correction

Slice-level motion correc-
tion/outlier handling improves
multi-shell HARDI for CSD/F-
BA/NODDI (NO).

Continued on next page
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No. Study Design & cohort dMRI protocol Region / ROI Main findings / Outcome

18 Bobba,
2022 [106]

55 newborns (0–3 mo
ADC/DTI subsets);
cross-sectional

3T; 2-shell (b500,
b1000 for ADC) &
single-shell DTI (30
b1000); online atlas

TBSS: Voxelwise +
tract-level maps

Age-specific diffusion atlases;
rapid neonatal changes; highest
growth rates in subcotical WM,
cortical spinal tract, cerebellar
WM and vermis; prematurity
and low GA at birth may result
in lasting delay in CC; public re-
source (NO).

19 Li,
2022 [95]

50 term (37–44 wk
PMA); behavior scores;
cross-sectional

3T; 4-shell (18 b500,
18 b1000, 18 b2000,
18 b2500); DKI,
WMTI, DTI

TBSS: WM skeleton
+ tract ROIs

DT+KT Mahalanobis “maturity
index” tracked PMA/behavior
better than DTI alone (YES).

20 Liang,
2022 [107]

40 term vs. 40 adults;
developmental contrast,
cross-sectional

3T; 3-shell (dHCP
protocol); MSMT-
CSD tractography;
DTI/NODDI met-
rics

SLF I/II/III sub-
bundles

Resolved SLF subdivisions at
birth; heterochromous maturity
(SLF II least mature); FA driven
by NDI more than ODI (NO).

21 Jeong,
2022 [100]

15 term newborns
grouped by outcome
(normal, abnormal,
death); prognostic
focus, cross-sectional

3T; 3-shell (b700, 33
b800); CSD, FBA;
connectome;

Major tracts;
fixel metrics
(FD/FC/FDC),
ML classifier

Fixel metrics/connectivity at
TEA related to later motor/cog-
nitive outcomes; prognostic util-
ity beyond DTI (YES).

22 Wang,
2023 [114]

42 term neonates
(≤28 d), cross-sectional

3T; 2-shell (25-dir,
b1000, b2000); DKI

11 manual ROIs:
PLIC/ALIC; CC
(genu/splenium);
frontal/central/pari-
etal WM; caudate;
GP; putamen; thala-
mus

Normative DKI patterns:
MK increased and diffusiv-
ity decreased with age across
WM/GM (NO).

23 DiPiero,
2024 [115]

91 pne-month infants;
GBSS framework (no
case–control focus)

3-shell (9 b350, 18
b800, 36 b1500);
GBSS for infant cor-
tex; DTI, NODDI

Cortex (GM skeleton) Refined GBSS for infant cor-
tex; improved registration/de-
lineation; PMA-related cortical
microstructural trends; no sex
effect (NO).

24 Verschuur,
2024 [108]

Exemplar TEA scans
(late-preterm + dHCP
case); feasibility, cross-
sectional

3T; two-shell (45-
dir, b800, b2000)
or dHCP; DTI +
CSD/SS3T-CSD
tractography

Manual ROIs in fiber
bundles: CC; CST;
crossing-fiber regions

Guidance for reconstructing
crossing fibers in neonatal
dMRI; sensitivity to angular/s-
patial resolution and processing
choices (NO).

2.4 Neonatal PWML: Definitions, Imaging, Quantification, and Outcomes

Neonatal PWML are frequent, clinically relevant, and heterogeneous. Their multimodal
MRI signatures indicate complementary facets of the lesion: a T1-defined core, a T2 and MD
penumbra, and, in a subset, SWI evidence of hemorrhagic and perivenular components, while
diffusion metrics capture tract-level effects that relate to burden and outcomes. Despite this
progress, tract-specific applications of advanced diffusion models to optic-radiation PWML
are rare. This review integrates definitions, cross-modality imaging, quantitative diffusion
findings, and outcome links, and motivating our Diffusion Bubble Model to phenotype OR-
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PWML beyond conventional tensors.

2.4.1 Definition of PWML

Punctate white matter lesions are common in neonates, especially those born preterm, and
have been associated with later neurodevelopmental deficits [5, 6, 116, 117]. Radiologically,
PWML are classically defined as small, non-cystic foci within predominantly unmyelinated
white matter that appear hyperintense on T1-weighted images and iso- to hypointense on T2-
weighted images [116,118–122]. Several clarifications are warranted: (i) Historically, PWML
occupies the punctate noncystic end of the periventricular leukomalacia spectrum (PVL). In
the ultrasound era, severe cystic PVL was most readily detected, while the advent of MRI,
particularly T1-weighted imaging, brought attention to early focal noncystic lesions; related
terms in the literature include “non-cystic PVL”, “punctate (or focal) white matter abnormal-
ity” and “punctate (white matter or brain) lesion” [122–126]. (ii) Subsequent reports noted
that the T2-weighted signal of PWML is not invariably hypointense. Iso-intense foci have
been described and incorporated into working definitions [127,128]. (iii) To avoid confounders
of intrinsic T1 hyperintensity of normally myelinating tissue, some studies excluded regions
undergoing active myelination from PWML counts and analyzes (e.g., [122]). (iv) Neonatal
PWML should be distinguished from adult punctate white matter hyperintensities, which
differ in tissue environment, imaging criteria, and pathogenesis.

In practice, however, PWML exhibit developmental variability: they cluster in periventricular
and deep white matter, may border regions entering early myelination at term-equivalent age,
and show diffusion changes that are frequent but not invariable.

2.4.2 PWML locations

PWML mainly involve the periventricular and deep white matter, notably the peritrigonal re-
gion, centrum semiovale, and posterior radiations, including the optic radiations. This topog-
raphy is well documented across cohorts of preterm infants [117,129]. It likely reflects several
converging vulnerabilities in the late-gestation brain: (i) long medullary vascular trajecto-
ries with relatively sparse collaterals, together with dependence on deep medullary venous
drainage, predispose periventricular white matter to hypoperfusion and venous congestion,
though this “end-zone” hypothesis remains debated [130]; (ii) metabolic demands are high as
axons and glia rapidly mature [130]; (iii) and preoligodendrocytes in incompletely myelinated
tissue are especially susceptible to hypoxia–ischemia and inflammatory insults [131, 132]. In
addition, barrier and immune signaling is still maturing in early life, and systemic illness
or inflammation can modulate risk, although infection is neither necessary nor sufficient for
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PWML [133].

Incidence varies widely across cohorts owing to differences in definitions, imaging protocols,
and case mix. One early series reported an overall neonatal incidence of approximately 23%,
with 86% of cases occurring in preterm infants [123]. Another study given mean incidece
of isolated PWML was 22.1% through study 1655 patients [6]. In preterm populations
specifically, reported rates range from 10–50% [5, 117]. Regional predilection for posterior
pathways has been repeatedly noted; for example, Childs et al. observed that 9 of 12 minor
PWML were located along the optic radiations [123]. Posterior lesions (including OR) were
reported in 23 to 53% of cases. Bassi reported 12/19 in optic radiation of preterm scan [126].
Li et al reported 8 anterior, 25 central, and 22 posterial lesions [129]. While Kersbergen et
al. only reported 5 out of 112 appered in posteri white matter or along the optic radiation
in preterm infants PWML study [117].

2.4.3 Morphologic patterns

In neonatal MRI practice, PWML are most commonly described using three descriptive
patterns: (i) punctate: small, discrete foci; (ii) linear or striated: radially oriented streaks
that tend to follow deep medullary veins or fiber directions; and (iii) clustered: aggregations
of adjacent punctate lesions that form a larger region of involvement [5, 117]. These labels
are descriptive, not pathognomonic, and are illustrated in Fig. 2.1. Punctate foci can reflect
microvascular hypoperfusion, microhemorrhage, or focal inflammatory injury; linear foci can
accompany perivenular injury or early myelin–axon involvement; and clustered lesions often
indicate a higher local burden of multifocal injury [122].

Etiologic framework PWML likely arises from intersecting mechanisms operating in the
late-gestation white matter: (i) Hypoxic–ischemic/low-flow injury, particularly in periven-
tricular and deep white matter supplied by long medullary end arteries with limited collat-
eralization. Energy failure in premyelinating oligodendrocytes and axons leads to membrane
disruption and focal necrosis [5, 117]. (ii) Inflammatory–immune injury, including fetal or
perinatal systemic inflammation and, less commonly, infection-related processes, which am-
plify glial activation and microvascular dysfunction [5]. (iii) Hemorrhagic/vascular injury,
where microbleeds or perivenular congestion contribute to punctate foci, often detectable
as susceptibility effects in SWI and aligned with the anatomy of the deep medullary ve-
nous [117,122]. These pathways frequently cooccur, and individual lesions may reflect mixed
pathology [5, 117].

Temporal stages PWML evolve along a developmental timeline from an acute stage, char-
acterized on imaging by small T1-hyperintense foci with frequent diffusion restriction in
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(f) Linear PWML on T2w

Figure 2.1 Representative morphologic patterns of PWML on structural MRI (dHCP). Top
row: T1-weighted; bottom row: T2-weighted. Columns illustrate (left) punctate, (middle)
clustered, and (right) linear PWML patterns in axial planes. Consistent windowing and
matched slice levels are used; lesions are highlighted with arrows. Provenance: author-
generated examples from the dHCP dataset.

clustered lesions and/or susceptibility on SWI in linear lesions, to a subacute stage with
resolution of edema and inflammation alongside reactive gliosis, oligodendroglial progenitor
proliferation, and early vascular remodeling; in a subset, a chronic stage follows, leaving gli-
otic residua or subtle scarring [117,122,134]. A proportion of lesions partially or completely
regress radiologically, reflecting both biological recovery and maturational remodeling, but
persistent microstructural alterations can remain, especially with clustered or tract-involving
lesions [7, 117,126].
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2.4.4 Imaging characteristics across modalities

Cranial ultrasound is widely available and useful for bedside screening but has limited sen-
sitivity to small punctate foci; therefore, magnetic resonance imaging is the modality of
choice [5]. On MRI, PWML are typically T1-hyperintense and isointense to hypointense
on T2-weighted images (see Fig. 7.3 (a), Fig. B.1 (b), Fig. 2.1, and Fig. 1.3); importantly,
T2 hypointensity is not invariable and isointense foci have been reported [116,118–122,128].
Diffusion changes, lower mean diffusivity, are frequent, but not universal and depend on the
timing and composition of the lesion [117].

(a) PWML on T1w (b) PWML on SWI

Figure 2.2 PWML in the optic radiations: T1-weighted core versus SWI hemorrhagic foot-
print (literature case). (a) T1-weighted MRI shows punctate hyperintense lesions confined
to the left and right optic radiations. (b) Susceptibility-weighted imaging (same slice) re-
veals a broader susceptibility footprint consistent with microhemorrhage, with shape and
extent—particularly on the right—differing from the T1-defined foci. Reproduced from pub-
lication under the terms of the Creative Commons Attribution–NonCommercial (CC BY–NC)
License [122].

Across modalities, lesion extents can be non-congruent: T1-weighted images often delineate a
compact core, whereas T2-weighted or MD maps depict a broader abnormal penumbra [126].
Susceptibility-weighted imaging can additionally reveal a hemorrhagic and perivenular com-
ponent in a subset, which can extend beyond the T1-defined core (Fig. 1.3 and Fig. 2.2) [117,
122].
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2.4.5 Quantitative biomarkers and diffusion MRI

Quantitative descriptions vary across studies owing to differences in acquisition and timing.
In general, acute lesions show lower MD consistent with restricted diffusion, with partial nor-
malization during subacute recovery; chronic residua may exhibit subtle T1 and T2 changes
with near-normal MD but altered microstructural indices.

Diffusion MRI has yielded two complementary streams of evidence for PWML. First, cohort
studies have applied DWI and DTI to PWML since the early 2000s and demonstrated tract-
level alterations (for example, FA reductions) and burden–effect relationships [7, 125, 126].
Second, tract-specific work in the visual pathway underscores the functional relevance of the
optic radiations, even when PWML is not the primary exposure [135]. As summarized in
Table 2.4, clustered lesions more often exhibit restricted diffusion, linear lesions more often
show susceptibility on SWI, lesion burden relates to widespread DTI alterations, and optic
radiation microstructure correlates with early visual performance [117,122,126,135].

2.4.6 Clinical correlations and outcomes

The outcomes after neonatal PWML are heterogeneous, reflecting the variability in the bur-
den of the lesion, location, imaging phenotype, and prematurity comorbidities. In general,
a higher burden of PWML and tract-associated lesions are associated with a greater risk of
adverse neurodevelopment, while small isolated foci often carry minimal sequelae [6, 7, 117].
Infants with PWML in the setting of a genetic disorder appeared to be more at risk of
poor outcome [119]. (i) Motor outcomes Across cohorts, PWML burden relates to wider
microstructural alterations on DTI and to poorer early motor performance, consistent with
a dose–effect relationship [7]. Tract-level analyses demonstrate reduced FA within major
pathways in infants with PWML, supporting the idea that focal lesions can have distributed
tract effects [126]. Lesions close to corticospinal projections (e.g., centrum semiovale or
PLIC vicinity) plausibly contribute to motor risk, although effect sizes vary by cohort and
timing [7, 117]. (ii) Visual and visuocognitive outcomes When PWML extend into poste-
rior pathways, involvement of the optic radiations (OR) raises concern for later visuocog-
nitive vulnerabilities. Although not PWML-centered, neonatal DTI studies show that OR
microstructure correlates with early visual performance, providing a tract-specific functional
context [135]. This makes OR-involving PWML a biologically plausible substrate for later vi-
sual difficulties and motivates tract-anchored analyses. (iii) Cognitive and language outcomes
Evidence is mixed, with some studies reporting subtle group-level decrements that attenuate
after adjustment for prematurity-related confounders, whereas lesion burden and distribution
remain more consistent predictors than any single sequence readout [5, 7]. Methodological
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Table 2.4 Neonatal PWML and diffusion MRI studies with an emphasis on the optic radia-
tions. Studies include PWML-focused cohorts and OR-focused background work. Columns
summarize cohort, whether the OR was explicitly analyzed, the diffusion model used
(DWI/DTI or advanced), and the key PWML-related finding. This overview highlights
tract-level evidence, cross-modality complements (e.g., SWI), and the limited use of higher-
order dMRI models directly targeting PWML.

Study (year) Cohort OR focus dMRI
model

Key finding (PWML-related)

Berman et al.,
2009 [135]

36 preterm at
29-41W GA

Yes (OR) DTI OR microstructure correlates with visual
performance; not PWML-focused.

Bassi et al.,
2011 [126]

23 PWML vs.
23 controls;
TEA

Main WM tracts,
including OR

TBSS,
DTI

Lower FA in major tracts; burden–effect
relation in PWML at TEA.

Niwa et al., 2011
[122]

17 preterm, 7
term

OR examples SWI SWI reveals hemorrhagic/perivenular
components beyond T1 core (comple-
ment to dMRI).

Kersbergen et
al., 2014 [117]

112 preterm;
30W PMA +
TEA

Posterior regions
seen esp. with
higher lesion load

DWI,
SWI

Linear+SWI vs. clustered+DWI pat-
terns; temporal evolution; many low-
burden foci regress by TEA.

Li et al., 2017
[129]

33 PWML vs.
33 controls

PWML adjacent,
main fiber tracks,
including OR

TBSS,
DTI

Grade III shows AD↑/RD↑/FA↓ near le-
sions; milder grades smaller effects.

Tusor et al.,
2017 [7]

511 preterm,
122 PWML,
42W PMA

No. PLIC and
other WM

TBSS,
DTI

PWML burden associates with
widespread microstructural alterations;
links to early motor outcome; FA↓, RD↑
found.

Tro et al., 2022
[136]

9 PWML, 8
control, TEA

No (spinal cord) DKI DKI is more sensitive than DTI-re
lated measures to alterations caused by
PWML.

Zhang et al.,
2025 [24]

Neonatal OR-
PWML

Yes (OR) DBM Our study: Isotropic diffusion spec-
trum / free-water separates “wet” vs.
“dry” PWML phenotypes in OR.

diversity in follow-up age and instruments (e.g., Bayley-III vs. later school-age tests) likely
contributes to between-study variability. (iv) Imaging correlates that modify risk Imaging
phenotype appears to matter: clustered lesions more often show restricted diffusion and are
linked to broader tissue effects, whereas linear (or striated) lesions more often show suscep-
tibility on SWI and may represent a different pathophysiological mix; many low-burden foci
become inconspicuous by term-equivalent age [117]. Severity grading also relates to nearby
tissue change, with higher-grade PWML showing more pronounced increases in AD and RD
and reductions in FA adjacent to lesions [129]. Importantly, radiological “regression” does
not necessarily imply full microstructural recovery, as tract-level abnormalities can persist at
term [7,126]. (v) The prognosis of these typical lesions is determined by early management,
particularly in the first year [6, 137].
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Motivation for applying DBM to OR-PWML Prior work establishes prevalence, het-
erogeneity, posterior involvement, and complementary multi-sequence signatures. However,
most studies are based on tensors; advanced models applied directly to OR-anchored PWML
remain scarce. In Chapter 7 we use a spectrum-based approach (DBM) to estimate diffusivity
distributions and free-water content within lesions, providing a dMRI framework to localize
which portions of the isotropic spectrum are perturbed.

2.5 Review of Neonatal Brain Tissue and Structure Segmentation

2.5.1 Traditional segmentation methods

Manual delineation: Manual slice-by-slice tracing by expert raters has long been considered
the reference standard for neonatal MRI segmentation because it can capture subtle anatomy
when performed carefully. However, it is labor-intensive, time-consuming, and subject to
inter- and intra-rater variability, which limits scalability to large cohorts and motivates auto-
mated alternatives [138–140]. In practice, manual delineation today is mainly used to create
atlases and to validate automated methods (like our PWML labeling and segmentation in
Chapter 7).

Atlas-based segmentation: Atlas methods propagate labels from one or more annotated ref-
erence images to a target image via deformable registration, optionally combining multi-
ple atlases with label-fusion strategies to improve robustness [141–143]. In neonates, age-
appropriate atlases are crucial due to rapid developmental changes; registration errors and
anatomical variability can degrade pure atlas-based transfer. Contemporary neonatal pipelines
therefore blend atlas priors with intensity modeling and iterative refinement. A prominent ex-
ample is Draw-EM (Developing brain Region Annotation with Expectation–Maximization),
used in the dHCP structural pipeline, which couples probabilistic atlases with EM-based
tissue modeling to achieve robust multi-tissue segmentations on T2-weighted images across
a wide gestational-age range [144,145].

Statistical/parametric segmentation: Intensity-based parametric models treat voxel intensi-
ties as draws from class-specific distributions and estimate class memberships via EM. Clas-
sical approaches include finite or mixture models and hidden Markov random field models to
encode spatial smoothness and correct for bias-field inhomogeneity [146–148]. These methods
can be combined with atlas priors (as in Draw-EM), initialized from coarse segmentations,
and iteratively refined [145]. Other traditional approaches include unsupervised clustering
(e.g., k mean, fuzzy c mean) and supervised voxel-wise classifiers (e.g., k-NN, Naive Bayes,
random forests, SVMs) using intensity and spatial location features; for newborns, k-NN and
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random forest frameworks have been successfully used to segment T2-weighted data into WM,
GM and CSF and related classes [149,150]. Although effective and less labor-intensive than
manual annotation, these methods rely on hand-crafted features and often under-perform
modern deep learning when large labeled datasets are available.

Statistical shape modeling and deformable models: Deformable models incorporate prior shape
information and image-driven forces to refine boundaries, typically via active contours or
level-set evolutions [151,152]. In neonatal MRI, such models have been applied to structures
like cortex or ventricles, sometimes in morphology-driven frameworks, and are frequently
coupled with atlas or intensity models to improve anatomical plausibility [153, 154]. These
methods can sharpen boundaries and enforce realistic shapes but generally require good
initialization and may struggle with the pronounced inter-subject variability and contrast
changes in early life.

2.5.2 Deep learning–based segmentation

Deep learning has markedly advanced brain MRI segmentation, including in neonates. Convo-
lutional neural networks (CNNs) learn hierarchical features directly from data and have shown
superior accuracy and consistency over classical pipelines when sufficient training labels are
available. The U-Net architecture introduced an encoder–decoder with skip connections that
preserves localization while leveraging deep, multi-scale features, and U-Net variants domi-
nate many medical segmentation benchmarks [155]. For neonatal imaging specifically, early
CNN work (e.g., multi-scale, patch-based CNNs) reported Dice scores around 0.80–0.87 for
neonatal tissues, demonstrating feasibility despite challenging contrast [156].

Fully 3D architectures further improved volumetric consistency. V-Net extended the U-
shaped design to volumetric convolutions and popularized Dice-based losses that help with
class imbalance in medical images [157]. More recently, nnU-Net automated much of the con-
figuration burden (patch size, preprocessing, network depth, postprocessing) and delivered
top-tier performance across diverse tasks, including brain tissue and structure segmentation,
without manual tuning, showing that robust data-driven configuration can rival bespoke
architectures [158]. This thesis also choose nnU-Net as the method for segmentation (Chap-
ter 5).

To better capture long-range dependencies, transformer-based or hybrid CNN–transformer
models have been introduced. UNETR and Swin UNETR use transformer encoders (with
hierarchical, shifted-window self-attention for the latter) within a U-shaped decoder, and
have achieved strong results on challenging benchmarks such as BraTS 2021 [159,160]. These
models often require substantial compute and training data, but current evidence suggests
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they can match or exceed CNN-only baselines when well trained.

In general, deep learning methods are now the state of the art for neonatal brain magnetic
resonance imaging segmentation in many settings. Their main limitation is dependence on
reliable training labels, which are scarce and expensive in neonates (often derived from dHCP,
Draw-EM or expert annotations). Nevertheless, with transfer learning, data augmentation,
and semi-supervised strategies, CNNs and hybrid models provide accurate and consistent
tissue and structure delineations across neonatal cohorts [140,161].

2.5.3 Segmentation using diffusion MRI data

Accurate tissue segmentation is central to studying neonatal brain development and pathol-
ogy. In practice, infant segmentation pipelines rely primarily on high-resolution structural
MRI, with T2-weighted images preferred during the neonatal period because they offer
clearer gray-white matter delineation than T1-weighted images prior to substantial myelina-
tion [10, 162, 163]. The dHCP structural pipeline (DRAW-EM) is a representative example:
it segments the T2w volume into multiple tissue classes and cortical parcels and has become
a standard for neonatal datasets [103,162].

A practical limitation of structural-first workflows is that anatomical labels must be trans-
ferred into diffusion space. Diffusion MRI is typically acquired with single-shot EPI for
speed, which introduces susceptibility- and eddy-current–induced geometric distortions that
vary with phase-encoding and anatomy [164, 165]; in neonates these distortions compound
with small head size and high water content [166]. Additionally, DWIs typically encompass
multiple volumes that may not align properly due to infant movement during scans [167].
This resolution disparity, different distortions and misalignment between diffusion MRIs and
T2-weighted images can result in inaccuracies in segmentation placement, thereby affect-
ing the reliability of statistical outcomes. Even with correction, residual mismatch between
structural and DWI spaces can degrade label placement and tractography constraints [165].

These challenges have motivated diffusion-native space segmentation: learning tissue labels
directly from DWI or diffusion-derived maps, thus avoiding intermodality registration. Zhang
et al. proposed DDSeg, a CNN that predicts WM, GM and CSF from diffusion features
(DTI and corrected DKI contrasts) trained on HCP data and then applied to diverse acqui-
sitions without requiring T1 and T2 inputs [168]. More recently, Theaud et al. introduced
DORIS, a DWI-based deep network that outputs 10 tissue classes, including ventricles and
key subcortical nuclei, specifically to improve anatomically constrained tractography; in lieu
of a diffusion-space ground truth, it uses a silver standard derived from FreeSurfer labels
registered to DWI [169]. Reviews of machine learning for diffusion MRI likewise highlight
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diffusion-only segmentation as a growing, viable track for sites lacking structural scans [170].

In conclusion, the appropriate age-appropriate atlas and EM frameworks on the T2-weighted
anatomy remain reliable throughout the TEA window; modern CNN improve the accuracy
and consistency of brain segmentation when labels exist. Diffusion-native segmentation re-
duces the cross-modal registration error and is valuable when structural scans are missing.

This review motivates two pragmatic design choices for the rest of the thesis: (i) working
directly in diffusion space with a diffusion-only segmentation pipeline to avoid cross-modal
registration error and to enable analyzes when structural MRI is unavailable; and (ii) adopting
a spectrum-based diffusion model that localizes shifts, width, and tail changes in the isotropic
spectrum, disentangling free-water–like from restriction-dominated effects. The next chap-
ter introduces our proposed model—the Diffusion Bubble Model (DBM)—and outlines its
formulation, algorithm, and chapter-by-chapter plan.
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CHAPTER 3 METHODOLOGY

Introduction

This chapter provides the methodological backbone for the four results chapters. It is or-
ganized in two parts. First, it introduces the proposed Diffusion Bubble Model (DBM), a
spectrum-based dMRI framework that reconstructs the isotropic diffusivity spectrum while
minimally adjusting for anisotropy. Second, it outlines the general research plan for each of
the result chapters.

3.1 Proposed Diffusion MRI Model: Diffusion Bubble Model (DBM)

Advanced diffusion MRI models balance biological realism with mathematical tractabil-
ity [171]. Conventional compartment models either (i) fit a single diffusion tensor to an entire
voxel or (ii) decompose the diffusion-weighted signals into a small, fixed set of compartments,
both of which can oversimplify the complex microstructure present within brain tissue vox-
els [17,25,26,29]. At the other extreme, diffusion spectrum approaches aim to recover a full
displacement or diffusion spectrum (for isotropic and/or anisotropic components) but typi-
cally require a heavy acquisition burden and complex reconstruction strategy [23, 172,173].

The proposed Diffusion Bubble Model offers a middle ground: it preserves the sensitivity
needed for anisotropic diffusion analysis while modeling the isotropic part of the signal as
a continuous one-dimensional spectrum of “diffusion bubbles” [24]. Because the spectrum
spans from highly restricted to highly free diffusion water, DBM is expected to be sensitive
to subtle microstructural changes associated with brain maturation and injuries.

3.1.1 Model concept

DBM assumes that the normalized diffusion-weighted signal can be decomposed into two
additive terms (Fig. 3.1):

1. Isotropic diffusion bubbles: a continuum of (near-) isotropic tensors, each character-
ized by limit number of parameters set (for isotropic tensors, a scalar diffusivity Di);
Together, their coefficients (weights) form an isotropic diffusivity spectrum.

2. Anisotropic adjustment tensors: a small set of cylindrically tensors that absorb the
residual direction-dependent signal.
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Operationally, DBM first estimates the anisotropic adjustment to minimize its influence
on the isotropic fits, and then performs a stable, high-resolution recovery of the isotropic
spectrum. Plotting the coefficients against their corresponding diffusivity (or effective bubble
diameters) produces the isotropic spectrum (Fig. 3.2).
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Figure 3.1 Schematic of the Diffusion Bubble Model (DBM). Red spheres depict isotropic
diffusion “bubbles” spanning a continuum of scalar diffusivity Di; the blue cylinder denotes
a cylindrically symmetric anisotropic adjustment aligned with a dominant fiber direction (a
single cylinder is shown for clarity). Decomposing the normalized diffusion-weighted signal
into these isotropic and anisotropic terms yields an isotropic diffusivity spectrum while re-
taining directional sensitivity beyond conventional single-tensor models. Figure was from our
prior open-access article with author permission [24].
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Figure 3.2 Conceptual DBM isotropic diffusion spectrum. The curve plots isotropic decom-
position coefficients (along y-axis) against isotropic bubble diffusivity (equivalently, effective
bubble diameter, along x-axis).

3.1.2 Mathematical formulation

Let Sk be the diffusion-weighted magnitude signal acquired with b-value bk and and unit
gradient direction gk (|gk| = 1); let S0 be the non-diffusion-weighted signal. We model the
normalized signal Sk/S0. For a single diffusion tensor D, the mono-exponential relation is

Sk/S0 = e−bkgT
k Digk (3.1)
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Rather than a single D, DBM represents the DWIs as the sum of the isotropic compart-
ment by a continuum of isotropic diffusion tensors Di and anisotropic adjustment part as
anisotropic tensors Dj. Thus, for the k-th acquisition (b-value bk, unit gradient gk), the
complete model combines both terms with noise/mismatch:

Sk/S0 =
M∑

i=1
fDi

e−bkgT
k Digk

︸ ︷︷ ︸
Siso

+
N∑

j=1
fDj

e−bkgT
k Djgk

︸ ︷︷ ︸
Saniso

+ϵk (3.2)

with S0 the non-diffusion-weighted signal.

1. M and N are the numbers of isotropic bubbles and anisotropic tensors, respectively
(DBM reduces to a purely isotropic model when N = 0);

2. Di = DiI is an isotropic tensor, whereas Dj = diag(λ∥, λ⊥1, λ⊥2) is a long narrow
tensor;

3. The weights satify ∑M
i=1 fDi

+ ∑N
j=1 fDj

= 1.

The two terms serve complementary purposes:

1. The isotropic spectrum (Siso) captures the full distribution of restricted, hindered and
unrestricted water, allowing richer microstructural metrics than scalar quantities such
as mean diffusivity.

2. Anisotropic adjustment Saniso absorbs residual directional signal, (i) protecting the
isotropic fit from bias, and (ii) retaining biologically relevant orientation information
for highly ordered tissues.

Together, these components provide a more complete and biologically interpretable charac-
terisation of neonatal brain tissue than conventional diffusion tensor models.

3.1.3 Algorithm for estimating DBM parameters

The goal is to determine the diffusivities Di and Dj in Eq. (3.2), together with their non-
negative weights fDi

and fDj
. We adopt a strategy (Algorithm 1): first reduce the anisotropy

of DWI signal, then solve a linear problem for the isotropic spectrum using the non-negative
least squares (NNLS) algorithm.
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Algorithm 1: DBM Reconstruction Algorithm With Anisotropic Adjustment
Input : DWIs: S1, S2, · · · , Sn; b values b, and b vectors b⃗
Output: fDj

, fDi
and metrics derived: MDDBM , σDBM

1

Step 1/2 : Obtain fDj best
with fixed λ//, λ⊥

2 Initialize Lossmin = 1.01, fDj best
= 0, λ// = 3.2µm2/ms, and λ⊥ = 0.1µm2/ms;

3 for fDj
← 0.01 to 0.99 with step of 0.005 do

4 compute anisotropic diffusion signal Saniso = ∑N
j=1 fDj

e−bkgT
k Djgk ;

5 compute residual isotropic diffusion signals Siso = Sk/S0 − Saniso ;
6 fit the isotropic tensor ∑M

i=1 fDi
e−bkgT

k Digk ;
7 Loss = 1

M

∑M
i=1 |sphericity(Di)− 1|;

8 if (Loss > tol) and (Loss < Lossmin) then
9 fDj best

= fDj
, Lossmin = Loss

10 else
11 break
12 end
13 end
14

Step 2/2 : Determining Isotropic Diffusion Coefficients fDi

15 Set D1, D2, · · · , DM ;
16 Compute Saniso using fDj best

, λ//, and λ⊥;
17 Removing Saniso from Sk, got Siso = ∑M

i=1 fDi
e−bkgT

k Digk ;
18 Create design matrix A = e−bgTDjg;
19 Fit Siso = AF , F = [fDi

, fDi
, · · · , fDM

]T using NNLS;
20 return fDi

, fDi
, · · · , fDM

// For later metric derivation

Sk/S0 − Saniso =
M∑

i=1
fDi

e−bkgT
k Digk (3.3)

Loss = 1
M

M∑
i=1
|sphericity(Di)− 1| (3.4)

Rationale for Stage A

The diffusion in brain tissues is usually anisotropic, especially for white matter. Although
any residual anisotropy biases the isotropic spectrum, we first subtract DWIs arising from a
single highly elongated tensor (eigenvalues of (3.2, 0.1, 0.1) µm2/ ms in the thesis) [25, 174].
The anisotropic adjustment coefficient fadj was looped from 0.01 to 0.99 in small steps.
Optimal fadj is found by enforcing the sphericity of the remaining isotropic fit, the sphericity
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of 1 indicating a perfect sphere. If needed, after coarse looping feeding the optimal fadj0 ,
a nonlinear optimization can be performed by setting boundary from max{fadj0 − 0.1, 0} to
min{fadj0 + 0.1, 1} minimizing the loss (Equation 3.4).

Rationale for Stage B

With the anisotropic term fixed, Eq. (3.3) becomes linear in fDi
. Constraining Di to the

biophysically plausible range 0.1 − 3.2 µm2/ms and enforcing non-negativity yields a well-
posed NNLS problem whose solution defines the voxel’s isotropic diffusion spectrum.

3.1.4 DBM-derived metrics

Because there is no universally agreed diffusivity cutoff that cleanly separates “restricted”
from “non-restricted” diffusion within a voxel (such thresholds are protocol- and tissue-
dependent), we summarize the isotropic spectrum using threshold-free distributional descrip-
tors rather than fixed cut points (as advocated in prior work) [38–40]. For each voxel, we
compute the metrics listed in Table 3.1, grouped as anisotropic metric (fadj), diffusion po-
sitional metrics (D25, D50, D75, Dmain, Dpeak, fmain, fpeak, and ffast) and general (shape)
metrics (MDDBM, σ2

DBM, SkDBM and KDBM).

Table 3.1 DBM metrics: definitions and interpretation. Statistical moments are computed
over the normalised isotropic spectrum fDi

; SkDBM (skewness) and KDBM (kurtosis) are di-
mensionless (kurtosis reported as Fisher excess unless stated). All diffusivity quantities
(D, Dpeak, D1/4, D1/2, D3/4, and FWHM) are postional metrics, expressed in µm2/ms (i.e.,
10−3 mm2/s). ffast sums spectral weights with D ≥ 2.5 µm2/ms (free-water–like range). In
this thesis, D1/4 = D25 = D25, D1/2 = D50 = D50, D3/4 = D75 = D75.

Symbol Statistical definition Practical interpretation

MDDBM First moment (mean) Mean diffusivity after aniso. adjut
σ2

DBM Second central moment (variance) Overall spread of diffusivities
SkDBM Third standardised moment (skewness) Asymmetry of the spectrum
KDBM Fourth standardised moment (kurtosis) Peakedness / tail heaviness
Dpeak (Dmain) Diffusivity at the main spectral peak Predominant diffusion scale
fpeak (fmain ) Weight at Dpeak Dominant diffusion fraction
FWHM Full width at half maximum Breadth of the main lobe
FWHML/R Left / right edge of FWHM window Low / high diffusivity limits
D25,50,75 Diffusivity at quartile cumulative area Quartile markers (shift with pathology)
ffast

∑
Di>2.5 fDi Fraction of “free-water” components

fadj Weight of anisotropic adjustment tensor Proxy for fibre content (FA-like)

These threshold-free descriptors let us detect microstructural shifts: for punctate white mat-
ter lesions, we expect, for instance, a broader FWHM and a leftward shift of D25, and higher
ffast reflecting extra free water.
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3.2 Chapter-by-Chapter Research Plan

3.2.1 Chapter 4 Quantitative Evaluation of Diffusion Bubble Model

Motivation In this chapter, we ask the question: Can DBM be a credible, spectrum-based
alternative to neonatal dMRI that preserves directional information while resolving isotropic
diffusion along a physiologically meaningful continuum?

Objective & Hypothesis We aim to establish DBM as a credible and robust tool for neona-
tal imaging by rigorously testing its properties under controlled and real-world conditions.
We hypothesize that DBM will demonstrate spectral invariance to anisotropy, accurately
recover known isotropic fractions, reveal distinct tissue fingerprints in vivo, and our research
dMRI-25-dir protocol will have comparable metrics to clinically dMRI-32-direction acquisi-
tion protocols.

Method A multi-stage validation framework is employed:

1. Simulations: Forward models emulate a neonatal multi-shell acquisition to test core
mechanisms: spectral invariance at fixed MD, and recovery of fast and slow isotropic
pools with and without an anisotropic compartment.

2. In-vivo Analysis: DBM is applied to a cohort of 248 neonates to characterize tissue-
specific spectral patterns (cortical GM, deep GM, WM) and developmental trajectories.

3. Protocol Comparability: DTI-derived metric agreement between a research dMRI-
25-dir protocol and a clinical dMRI-32-dir protocol is quantified using regression, Bland-
Altman analysis, equivalence testing (TOST), and intraclass correlation (ICC).

Outcomes This chapter provides a foundational proof-of-concept for DBM. We demonstrate
its theoretical construct validity through simulations, its biological plausibility through dis-
tinct in vivo tissue fingerprints and age-related trends, and our proposed research dMRI
acquisition protocol has robustness and equivalence to the clinical protocol. These results
justify the use of DBM in the subsequent applied chapters.

3.2.2 Chapter 5 Segmentation Based on Diffusion Magnetic Resonance Imaging

Motivation In this chapter, we address a critical bottleneck: How can we perform accu-
rate brain tissue segmentation when high-resolution structural scans are unavailable or cor-
rupted—a common scenario in clinical practice—to fully utilize clinical scanned diffusion
MRI data?
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Objective & Hypothesis We aim to develop and validate a deep learning model that segments
neonatal brain tissue directly from native dMRI-derived maps. We hypothesize that this
diffusion-only model will perform comparably to a T2w-based baseline on internal data and
achieve superior generalization on external data.

Method We train and benchmark two nnU-Net models under an identical framework:

1. Diffusion-only Model: Inputs are standard DTI maps (AD, RD, MD, and FA) in
native dMRI space.

2. T2w Baseline Model: Serves as a state-of-the-art control.

3. Comparison: Performance is rigorously evaluated on an internal dataset (dHCP) and
an external, multi-scanner dataset (CHUSJ) to test hypothesis.

Outcomes We present a diffusion-only segmentation pipeline that successfully rescues data
otherwise excluded from quantitative analysis. The model demonstrates accessible perfor-
mance on par with the T2w baseline internally and shows enhanced generalization externally.
This tool directly enables the cohort-wide applications of DBM in Chapter 6 and expands
the potential cohort for the Chapter 7 study by providing reliable tissue and structure labels
for clinical-grade dMRI datasets.

3.2.3 Chapter 6 Comparative Study of Preterm and Term-born Infants

Motivation Here, we tackle a fundamental question in developmental neuroscience: Is the
altered brain microstructure of preterm infants at term-equivalent age best explained by
a simple delay in maturation onset (a timing shift) or by a persistently altered pace of
development (a rate difference)?

Objective & Hypothesis We aim to model longitudinal microstructural trajectories from 34
to 40 weeks PMA in preterm infants and contrast them with a term-born reference to em-
pirically distinguish between these competing hypotheses. We hypothesize that differences
are primarily due to a timing shift, and that DBM will provide greater specificity than DTI
in localizing residual microstructural alterations.

Method Leveraging a prospective cohort scanned in CHUSJ, with longitudinal scans (preterms
at 34 and 40 weeks PMA) and cross-sectional controls (terms at 40 weeks PMA), we:

1. Map microstructural differences across tissue classes using both DBM and DTI.

2. Model developmental trajectories to test the timing-shift vs. rate-difference hypotheses.
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3. Control for concurrent volumetric changes to isolate true microstructural effects.

Outcomes This chapter delivers a nuanced understanding of preterm brain development. We
provide evidence supporting the dominant mechanism (timing versus rate) and identify the
regions of the brain that are most vulnerable to residual alterations. Crucially, we demon-
strate that DBM offers enhanced biological specificity over DTI by localizing developmental
differences to specific parts of the diffusivity spectrum.

3.2.4 Chapter 7 Microstructural Characterization and Subtyping of Neonatal
Punctate White Matter Lesions

Motivation In this chapter, we ask: Can the spectral sensitivity of DBM move beyond macro-
scopic tissue characterization to provide a quantitative, microstructural phenotype of punc-
tate white matter lesions (PWML), thereby revealing injury-specific signatures that are in-
visible to conventional models?

Objective & Hypothesis We aim to characterize the microstructural signature of PWML
within the optic radiation using DBM. We hypothesize that PWML will cause a leftward
shift of the isotropic diffusivity spectrum (indicating increased restriction) and that DBM
will outperform DTI in detecting these alterations and in distinguishing between proposed
lesion subtypes.

Method We conduct a focused analysis on PWML in the optic radiation:

1. Compare DBM spectra and metrics within lesions against (i) contralateral normal-
appearing tissue and (ii) healthy control tissue.

2. Benchmark the effect size and sensitivity of DBM against conventional DTI metrics.

3. Explore spectral differences between “wet” and “dry” PWML subtypes.

Outcomes We establish DBM as a sensitive tool for microstructural lesion phenotyping. We
demonstrate that PWML are characterized by a specific shift in the DBM spectrum, provid-
ing a quantitative biomarker of tissue injury. This work lays the groundwork for a future,
microstructure-informed classification system for neonatal brain injuries, with potential im-
plications for prognosis and personalized medicine.
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CHAPTER 4 RESULT 1: QUANTITATIVE EVALUATION OF
DIFFUSION BUBBLE MODEL

4.1 Introduction

Diffusion magnetic resonance imaging (dMRI) provides non-invasive access to brain mi-
crostructure and has become a key tool for studying brain development and injury, par-
ticularly the third trimester (from 28 week of GA to birth age, Fig. 1.1), a period marked
by rapid and heterogeneous microstructural changes [12, 62, 175]. Diffusion tensor imaging
(DTI), as the most widely used one-tensor dMRI model, has revealed general maturational
trends of decreasing mean diffusivity (MD) and increasing fractional anisotropy (FA) dur-
ing this preterm-to-term period [81, 82, 90, 109]. However, it reduced the complex diffusion
signal to a single tensor, conflating distinct microstructural compartments and obscuring
biologically specific changes along the diffusivity spectrum [23].

Spectrum-based methods address this limitation by estimating a continuous distribution
of diffusivity. These methods includes diffusion spectrum imaging (DSI), Diffusion Basis
Spectrum Imaging (DBSI) and Restriction Spectrum Imaging (RSI), spherical mean spectrum
imaging (SMSI) [13,27,28,105]. However, these approaches either require very dense sampling
schemes with many directions and shells or high b values that are infeasible in neonatal
imaging [13,34].

In this context, we previously introduced the Diffusion Bubble Model (DBM) as a practical
alternative. DBM preserves essential directional information for the characterization of white
matter while representing the isotropic signal component as a continuous spectrum of diffu-
sivity, ranging from highly restricted to fast-diffusing water pools [24]. This formulation is
hypothesized to offer increased sensitivity to subtle microstructural changes associated with
both typical maturation and pathology, such as punctate white matter lesion (PWML) [24].

To establish DBM as a credible tool for developmental neuroscience, a rigorous evaluation of
its properties under realistic neonatal imaging conditions is essential. This study therefore
aims to comprehensively validate DBM through a multi-stage framework combining simula-
tions, in vivo analysis, and protocol comparisons. Our specific objectives are threefold: (i) to
verify core model mechanisms using forward simulations emulating a widely used neonatal
multi-shell acquisition; (ii) to characterize tissue-specific spectral patterns and developmental
trajectories across cortical gray matter, deep gray matter, and white matter in a neonatal
cohort; (iii) to assess the comparability of DTI metrics derived from a gradient direction
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reduced protocol (dMRI-25-direction protocol) against a standard clinical protocol (dMRI-
32-direction protocol).

We preregistered four hypotheses aligned with our objectives: (i) The isotropic spectrum
remains invariant to changes in anisotropy when its mean diffusivity is held constant. (ii) An
anisotropy adjusted fraction derived from DBM correlates with FA, and fast and slow isotropic
fractions are recoverable with high fidelity, even in the presence of an anisotropic compart-
ment. (iii) Cortical gray matter, deep gray matter, and white matter exhibit distinct spectral
fingerprints in vivo, with age-dependent trends localized to specific regions of the diffusion
spectrum. (iv) The dMRI-25-direction protocol yields diffusivity estimates equivalent to
those from the dMRI-32-direction protocol, with FA differences within acceptable bounds for
downstream applications.

4.2 Method

4.2.1 Subjects

Parameter optimization For DBM hyperparameter tuning progress displaying, we used
one healthy, representative infant from the dHCP second release (male; gestational age at
birth = 32.29 weeks; postmenstrual age at scan = 35.14 weeks). This dataset was selected
for its high diffusion image quality and served only to optimize model parameters that were
then held fixed for all subsequent analyzes.

In-vivo validation The primary cohort consisted of 248 singleton infants from the second
dHCP release, scanned between 33 and 43 weeks PMA. The inclusion criteria were high-
quality diffusion data with the radiology review scores of 1–2 and absence of sedation at
scanning. These subjects were used to characterize tissue-specific DBM spectra across dif-
ferent tissues—cortical gray matter, deep gray matter, and white matter—and to model
age-related trajectories.

Protocol comparability (within-subject paired acquisitions) To assess cross-protocol
agreement, we prospectively enrolled 67 unique healthy infants at CHU Sainte-Justine (Mon-
tréal, Canada) between June 2021 and January 2025, with the approval of the CHU Sainte-
Justine Recearch Center Authority. Among these enrollments, 45 scan sessions had paired,
high-quality acquisitions using both diffusion protocols (the dMRI-25-direction and dMRI-
32-direction schemes) suitable for comparability analyses. All infants were born between 27
and 41 weeks’ gestational age and were scanned between 31 and 42 weeks PMA. The full
participant list are provided in Table A.1, Table A.2 and Table A.3.
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4.2.2 MRI acquisition

The complete acquisition parameters are listed in Table 5.2 of the next chapter. Here, we
only describe the general settings.

For the dHCP cohort, T2-weighted images were acquired with a fast spin-echo sequence
at 0.5 mm isotropic resolution, and diffusion MRI used a multi-shell scheme with 20 b0
volumes and three non-zero shells at b = 400/1000/2600 s/mm2 (voxel size 1.17 × 1.17 ×
1.50 mm3) [103].

For the CHU Sainte-Justine (CHUSJ) cohort, both a clinical 32-direction DTI sequence
and a research 25-direction dMRI sequence were acquired with 2.0 mm isotropic voxels, TR
/ TE of 8000/81 ms, and anterior–posterior phase-encoding with a reverse-phase scan for
susceptibility correction. Routine clinical T2w images were acquired alongside diffusion scans.

4.2.3 MRI processing

Full cohort-specific processing pipelines are detailed in the next chapter (dHCP: Section 5.2.3;
CHUSJ: Section 6.2.3); here we summarize only the general steps.

For the dHCP dataset, T2-weighted images underwent bias-field correction using N4ITK and
skull stripping using FSL-bet, followed by neonatal brain tissue and structure segmentation
with Draw-EM [162,176,177]. T2-weighted image and segmentations were transformed to the
dMRI space for 87-structure and 9-tissue ROI extraction. dHCP diffusion data processing was
used as released (denoising, motion/eddy correction with outlier replacement, susceptibility
correction) [103].

For the CHUSJ dataset, T2-weighted images received bias-field correction, skull stripping and
segmentation same as dHCP [162,176,177]. The raw diffusion-weighted images were first de-
noised using Marchenko–Pastur principal-component analysis (MP-PCA) [178]. Susceptibility-
induced distortions were then estimated and corrected with FSL TOPUP [176]. Next, all
DWI volumes were rigidly aligned to the first b0 to mitigate inter-volume motion [179]. Fi-
nally, images were resampled to the same resolution as dHCP using spline interpolation [179].

After preprocessing of both dHCP and CHUSJ, the DTI metrics were reconstructed and
extracted using a weighted least squares DTI algorithm [179, 180]; DBM isotropic spectrum
and the DBM metrics were reconstructed and extracted using our DBM algorithm and opti-
mized parameters previously [24]. The free-water–elimination model was also estimated for
simulation and in-vivo validation [181].
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4.2.4 Experiments and statistics

We validated the Diffusion Bubble Model in several stages to cover the mechanism, biology,
and robustness: (i) Parameter optimization; (ii) Simulation-based validation; (iii) in-vivo
validation in neonates. We also performed protocol comparability to use the same data
perform DTI reconstruction.

Parameter Optimization and Validation Using Representative Tissue Types

Optimal parameter selection for DBM was performed using representative voxels from three
different tissue types: cortical gray matter, white matter, and cerebrospinal fluid in an ex-
ample subject. This approach ensured that the model parameters were tuned to capture the
fundamental diffusion properties of major neonatal brain tissues.

The anisotropic adjustment coefficient was optimized using the algorithm detailed in Sec-
tion 3.1.3 (Part 1). Oriented by established diffusion properties of brain tissues, we hypothe-
sized that CSF, characterized by isotropic diffusion and very low fractional anisotropy, would
produce a value near zero fadj. In contrast, WM, with its highly organized fiber tracts, was
expected to exhibit a high fadj value. Cortical GM, which has a more isotropic microstructure
than WM but less than CSF, was expected to produce an intermediate value of fadj.

The isotropic diffusion spectrum was reconstructed in a diffusivity range of 0.1 to 3.2 µm2/ms.
To determine the optimal resolution of the spectrum, we evaluated a range of diffusion interval
steps (∆d): 0.15, 0.20, 0.25, 0.30, and 0.35 µm2/ms. The objective was to identify the smallest
∆d (the highest spectral resolution) that produced stable, physiologically plausible, and
discriminative isotropic decomposition curves in all three types of tissue, without introducing
spurious spectral noise.

Simulation-based Validation

To isolate specific biophysical drivers and verify that DBM behaves as theorized, we per-
formed forward simulations that mirror the dHCP multi-shell acquisition. In each experi-
ment, one parameter was varied, while others were kept fixed.

Anisotropy robustness For the anisotropy-robustness experiment, the goal was to test
whether (i) the isotropic spectrum remains effectively invariant to anisotropy changes when
MD is fixed, and (ii) the DBM anisotropy-adjusted fraction fadj tracks FADTI.

We synthesized single prolate tensors with fixed mean diffusivity (MD = 1.5 µm2/ms) and
systematically varied fractional anisotropy (FA) from 0 to 0.7, spanning and slightly exceeding
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typical neonatal corpus callosum values (FA ≈ 0.5). The eigenvalues were initialized around a
neonatal white matter reference ((λ1, λ2,3) = (2.0, 1.0) µm2/ms) and then rescaled as needed
to preserve the target MD at each FA level; principal orientations were randomized across
realizations to avoid directional bias. For each FA condition, we drew 1 000 independent
noise realizations.

DBM was fitted with the same basis and regularization used in vivo, yielding the isotropic
diffusivity spectrum and the anisotropy-adjusted fraction fadj. A conventional DTI fit on the
identical synthetic data provided FADTI as an external reference.

The spectrum and its 95% confidence intervals of different FA conditions were plotted to
check if isotropic diffusion spectrum was stable or not. To examine linkage to anisotropy,
we regressed anisotropy-adjusted fraction fadj on FADTI, reporting slope, intercept, R2, 95%
confidence intervals.

Fast- and slow-water sensitivity For the fast- and slow-water sensitivity experiment, we
simulated two-pool isotropic mixtures to test fraction recoverability and spectral localization.
The slow and fast components were assigned diffusivity in physiologically plausible ranges,
while the programmed fast fraction (ffast, Dfast = 3.0 µm2/ms) changed from 0 to 1 with
increments of 0.19.

To verify fast- and slow-water sensitivity in the presence of a directional structure, we re-
peated these simulations after adding a third compartment: a single anisotropic tensor
((λ1, λ2,3) = (2.0, 1.0) µm2/ms, fixed weight 0.3). Acquisition sampling, noise levels, and
experiments matched the fast- and slow-water sensitivity experiment without anisotropic
tensor.

In-vivo Validation (Neonatal Brain Tissue Fingerprints and Age Trajectories)

To visualize fingerprint differences along the diffusivity axis, tissue-averaged spectra with
95% confidence intervals for cortical GM, WM, and deep GM were plotted. We hypothesize
that DBM spectra can show tissue-specific “fingerprints” (WM narrower and right-shifted;
cortex GM broader with a fast tail; deep GM intermediate).

To assess correspondence with established models, we performed ordinary-least-squares re-
gressions at the subject–tissue level: fadj versus FADTI, MDDBM versus MDDTI, FfastDBM

versus FfastFWE. For each pairing, we report slope, intercept, R2.

To model maturation (age trajectories), we fitted linear mixed-effects models with fixed
effects for Tissue and Age (PMA in weeks, treated as a continuous variable). For each DBM
descriptor (fadj, MDDBM, FfastDBM), we estimated tissue-specific age slopes, obtained fitted
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trajectories with 95% confidence intervals, and controlled multiplicity across metrics using
FDR.

For comparison, analogous LMEs were fit for DTI (FADTI, MDDTI) and FWE (FfastFWE) to
compare the direction and magnitude of age effects with DBM.

As a compact summary, we displayed a heat map of the standardized age effects across tissues
(rows = metrics of DBM, DTI, FWE; columns = GM, deep GM, WM). Each cell reports a
unit-less effect size r = sign(β)

√
R2 alongside the variance explained. Positive r indicates an

increase with PMA; negative r indicates a decrease. Model assumptions (linearity, residual
normality) were inspected; When mild deviations were detected, results were verified with
robust (sandwich) standard errors in sensitivity analyses.

DTI Protocol Comparability: CHUSJ dMRI-25-dir versus dMRI-32-dir

This experiment evaluated whether the CHUSJ dMRI-25-direction research protocol yields
DTI metrics comparable to those from the clinical dMRI-32-direction protocol. Participant
characteristics, MRI acquisition parameters, and data preprocessing steps for this analysis are
detailed in the previous sections (Subjects, MRI Acquisition, and MRI Processing (CHUSJ)).
For each subject and protocol, mean values of AD, RD, MD, and FA were calculated within
white matter masks for subsequent statistical analysis.

The agreement between the two protocols was quantified using a suite of complementary sta-
tistical approaches, designed to assess different aspects of measurement concordance: linear
association, absolute agreement, statistical equivalence, and reliability.

Regression Analysis We performed Deming regression (error-in-variables regression), which
accounts for measurement error in both protocols, to model the relationship between the
dMRI-25-dir (dependent variable) and dMRI-32-dir (independent variable) metrics. The er-
ror variance ratio was set to 1, reflecting the matched signal-to-noise ratio and identical
post-processing pipelines for both acquisitions. We reported the slope (β), intercept (α), and
their 95% confidence intervals for each DTI metric. Scatter plots visualized the relationship
against the line of identity.

Bland–Altman Analysis Bland–Altman plots were constructed to assess absolute agree-
ment between the protocols. For each metric, the mean bias (defined as the mean difference:
dMRI-25-dir minus dMRI-32-dir) and the 95% limits of agreement (mean bias ±1.96× stan-
dard deviation of the differences) were calculated using WM averaged values per subject.

Equivalence Testing We employed two one-sided tests (TOST) to formally test for statis-
tical equivalence. Equivalence bounds were prespecified based on established repeatability
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data within the session: ±0.05 µm2/ms for AD, RD, and MD, and ±0.02 for FA. The 90%
confidence interval for the mean difference was computed; equivalence was declared if this
whole interval fell within the prespecified limits.

Reliability Assessment Intraclass correlation coefficients (ICC) were calculated using a
two-way mixed effects model to evaluate reliability. We report two distinct metrics: (i) ICC
(A,1): a two-way mixed, absolute-agreement, single-measure ICC, which assesses the agree-
ment of individual measurements between protocols. (ii) ICC (C,1): a two-way mixed,
consistency, single-measure ICC, which evaluates the stability of the subject ranking across
protocols, irrespective of a systematic offset. The interpretation of ICC values followed estab-
lished guidelines: < 0.50, poor; 0.50–0.75, moderate; 0.75–0.90, good; > 0.90, excellent [182].

To control the false discovery rate across the four primary DTI metrics, Benjamini–Hochberg
adjustment was applied to the respective p−values from the equivalence tests. All regression
models were inspected for standard assumptions (linearity, homoscedasticity of residuals).
Where minor violations were observed, key inferences were verified using nonparametric
bootstrap confidence intervals (1000 samples).

4.3 Results

4.3.1 Parameter optimization and validation using representative tissue types

Optimization of the anisotropic adjustment coefficient, from 0 to 0.99 in increments of 0.005,
yielded distinct optimal values for the main types of tissue, effectively capturing their known
microstructural properties (Fig. 4.1 (a)). The sphericity was maximized at 0.96 for gray mat-
ter, 0.51 for white matter, and 0.99 for CSF, corresponding to optimal anisotropic coefficients
of 0.07, 0.51, and 0.01, respectively. These results align with established tissue characteris-
tics: near-isotropic diffusion in CSF, low anisotropy in gray matter, and high anisotropy in
white matter.

Regarding the robustness of the isotropic diffusivity spectra derived to the choice of diffusion
interval step (∆d) of 0.15, 0.20, 0.25, 0.30 and 0.35 µm2/ ms (Fig. 4.1 (b-d)), the absolute
magnitudes of the spectral coefficients varied with ∆d, but the overall shape of the spectra
and the positions of the characteristic peaks remained highly consistent in each of the three
types of tissues. This stability ensured that the discriminative features of the spectra were
preserved regardless of the precise ∆d value. Based on this analysis, the best resolution
(∆d = 0.15, µm2/, ms) was selected for all subsequent analyzes to maximize DBM spectral
detail.
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Figure 4.1 DBM parameter optimization for representative neonatal brain voxels. (a)
Anisotropic adjustment fitting progress. Calculation process for isotropic sphericity by loop-
ing anisotropic coefficients from 0 to 0.99 in steps of 0.005. (b) Spectrum for CSF; (c)
Spectrum for cortical gray matter; (d) Spectrum for white matter.

4.3.2 Simulation-based evaluation of Diffusion Bubble Model

Simulations validated key properties of the Diffusion Bubble Model (DBM) under controlled
conditions (Fig. 4.2, Fig. 4.3, and Fig. 4.4).

Anisotropy robustness (Fig. 4.2) When mean diffusivity was held constant, the recon-
structed isotropic spectra remained nearly invariant across a wide range of fractional anisotropy
(FA from 0 to 0.70), with only a minor deviation observed at the highest FA (Fig. 4.2 (a)).
The DBM anisotropy adjustment coefficient (fadj) exhibited a strong linear relationship with
conventional DTI FA (β = 0.78, R2 = 0.95; Fig. 4.2 (b)). This confirms that fadj serves as a
robust, linearly proportional proxy for FA while the isotropic spectrum remains stable.
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Figure 4.2 DBM isotropic-spectrum stability across anisotropy levels and correspondence of
DBM anisotropy index fadj with FADTI. (a) Mean isotropic diffusion spectra (solid) and
their 95% confidence ribbons (shaded) for five representative FA values (0.00, 0.20, 0.45,
0.60, 0.70) drawn from a Monte-Carlo anisotropy sweep (MD = 1.5 µm2/ms, SNR = 90,
1000 noise realizations per FA). The near-perfect overlap of all curves demonstrates that the
DBM isotropic spectrum remains invariant when only tensor shape changes. (b) Scatter plot
(n = 15000 simulated voxels) comparing the DBM anisotropy adjustment coefficient (fadj)
with FADTI.

Fast- and slow-water sensitivity (Fig. 4.3) In simulations incorporating a fixed anisotropic
background, DBM accurately recovered the ground-truth fractions of fast and slow isotropic
pools.

1. Fast water sweep: Increasing the fast-water fraction vfast (Dfast = 3.0 µm2/ms) produced
a progressive right shift and broadening of the high-diffusivity tail of the spectrum
(Fig. 4.3 (a)). DBM-estimated FfastDBM showed excellent agreement with the ground
truth: ffastDBM = 0.82vfrac − 0.02 with R2 = 0.98 (Fig. 4.3 (b)).

2. Slow water sweep: Increasing the slow-water fraction vslow (Dslow = 0.3 µm2/ms) pro-
duced a progressive shift to the left and a tiled spectrum (Fig. 4.3 (c)). The recovery
was also highly accurate (fslow = 0.57vfrac + 0.01, R2 = 0.97, Fig. 4.3 (d)).

Bidirectional isotropic trade-off with and without anisotropy (Fig. 4.4) DBM main-
tained high fidelity in recovering isotropic fractions both in the presence and absence of an
anisotropic compartment.

1. In a two-pool (slow + fast) model without anisotropy, the estimated slow fraction
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Figure 4.3 DBM sensitivity to opposite ends of the diffusivity spectrum: fast-water sweep
(top row) versus slow-water sweep (bottom row). (a) Isotropic-spectrum curves obtained
from a Monte-Carlo mixture model in which the fast-water (D = 3.0 µm2/ms) fraction was
swept from 0 to 1 in 0.19 increments. The anisotropic signal was with a fixed anisotropic ten-
sor (λ1, λ2,3) = (2.0, 1.0) µm2/ms and S0 = 1000. (b) Corresponding quantitative accuracy:
DBM-estimated fast-water fraction (ffast) versus ground-truth vfrac for all simulated voxels.
(c) Isotropic spectra from a complementary sweep in which the slow-water (restricted) frac-
tion (D = 0.3 µm2/ms) was varied over the same range. (d) DBM-estimated slow-water
fraction (fslow) versus ground-truth vfrac.

closely tracked the ground truth (ffast = 0.82vfrac + 0.05, R2 = 0.99). Rising slow water
progressively shifts the spectral peaks to the left and eliminates the fast-tail hump.

2. In a three-component model (slow + fast + anisotropic) with the anisotropic weight
fixed at 0.30, the fast fraction was recovered with equally high precision (ffast =
0.79vfrac +0.05 with R2 = 0.997, R2 = 0.997). Rising slow water progressively shifts the
spectral peaks to the left and eliminates the fast-tail hump. The slope did not change
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much (0.82 versus 0.79) and the intercept did not change in relation to the case of two
groups, demonstrating that DBM decouples the isotropic fractions from the anisotropic
content.
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(c) DBM spectrum varying fast water
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Figure 4.4 DBM resolves isotropic mixtures with and without an anisotropic compartment.
(a, b) In a two-pool model, increasing the slow fraction (D = 0.3 µm2/ms) shifts spectra left-
ward, and DBM accurately tracks the change (R2 = 0.99). (c, d) Adding a fixed anisotropic
tensor (weight 0.30) does not impair quantitative recovery of fast fraction (R2 = 0.997),
confirming that DBM effectively separates isotropic and anisotropic contributions.

4.3.3 In-vivo validation (neonatal brain tissue fingerprints and age trajectories)

Having established the theoretical properties of DBM under controlled conditions, we next
evaluated its performance in-vivo across a cohort of 248 neonates (33–43 weeks, PMA).

Tissue spectra results in the full cohort (Fig. 4.5) DBM revealed distinct, tissue-specific
spectral profiles in neonatal brain tissue. White matter exhibited a compact spectrum with
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its peak shifted toward higher diffusivities, while cortical gray matter showed the broadest
distribution with a pronounced fast-diffusivity tail, consistent with greater CSF partial vol-
ume effects. Deep gray matter displayed an intermediate profile, closely resembling WM in
spectral contour. These patterns provide cohort-level spectral ’fingerprints’ for each major
tissue class.

Quantitative comparisons demonstrated strong agreement between DBM and conventional
models across tissues (Fig. 4.5 b-d): fadj versus FA (R2 = 0.80−0.93), MDDBM versus MDDTI

((R2 = 0.66 − 0.96)), ffastDBM versus ffastFWE (R2 = 0.50 − 0.60), with interpretable offsets
consistent with model definitions.

Developmental trajectories across tissues (Fig. 4.6) Between 33 and 43 weeks postmen-
strual age, all tissues exhibited characteristic maturational patterns. Fast water decreased
with age in all tissues (a, FWE: cortical GM β ≈ −0.0006, R2 ≈ 0.31; deep GM −0.004
and 0.13; white matter −0.007 and 0.16). The DBM fast water showed the same sign with
smaller effect sizes. The mean diffusivity decreased in all tissues for both models (DBM MD:
cortical GM β ≈ −0.011, R2 ≈ 0.33; deep GM −0.013 and 0.51; white matter −0.014 and
0.37). Anisotropy increased with age in white matter and deep GM and decreased in the
cortex. Finally, the fast tail of the spectrum narrowed with age, consistent with a left-shifting
sharpening isotropic spectrum.

Age effects across tissues (standardized heatmap) (Fig. 4.7) Analysis of standardized
effect sizes r = sign(β)

√
R2 revealed several key patterns:

(1) Differential maturational pace: DTI diffusivity showed the largest effects in deep GM
(both RD and MD: r ≈ −0.82; AD r ≈ −0.77), smaller magnitudes in WM (RD
r ≈ −0.69, MD r ≈ −0.66), and the smallest in the cortical GM (RD r ≈ −0.17).
DBM spectral metrics mirrored this: the fast-tail width decreased most in deep GM
(FWHMright r ≈ −0.72), less in WM (r ≈ −0.51) and cortex (r ≈ −0.52); positional
indices MDDBM shows similar results as MDDTI.

(2) DBM reaches comparable levels and adds spectral specificity: FA rises with age in white
matter and deep GM (both FA: r ≈ +0.71) and and falls in cortical GM (FA r ≈ −0.59);
DBM’s anisotropy adjustment coefficient fadj follows the same pattern with slightly
smaller magnitudes (WM: r ≈ +0.55; deep GM: r ≈ +0.63; cortical GM: r ≈ −0.40).
DBM mean diffusivity is also strongly age-sensitive (deep GM: r ≈ −0.71; WM r ≈
−0.61), approaching DTI MD. What DBM adds is “where” the change happens along
the diffusivity axis. In deep GM, the age effect concentrates toward the fast-diffusivity
tail: diffusion quartiles (3/4, 1/2, 1/4) gives r = −0.72, −0.61, −0.52 ), indicating pref-
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Figure 4.5 Cohort-level DBM isotropic spectra across tissues (N = 248; GA at scan: 33− 43
weeks). (a) Mean isotropic spectra with 95% CI ribbons for cortical GM (blue), deep GM
(orange), and white matter (green). White matter exhibits a narrower spectrum with its
peak shifted rightward on the diffusivity axis; deep GM is intermediate and closely follows
WM; cortical GM is broader with a more prominent fast-diffusivity tail and a clear leftward
tilt. (b) DBM anisotropy index (fadj) versus DTI FA (FADTI): one point per subject and
tissue (colored as in a). Ordinary-least-squares fits indicate excellent linear correspondence
(R2 = 0.80 − 0.93) with small intercepts (e.g., WM β ≈ 0.676, α ≈ 0.002). (c) DBM mean
diffusivity versus DTI MD: strong linear mapping in all tissues (WM R2 ≈ 0.96; CGM/DGM
R2 ≈ 0.66 − 0.68) with positive offsets consistent with spectrum-weighted MD (e.g., WM
β ≈ 0.585, α ≈ 0.776 µm2/ms). (d) DBM fast-water versus FWE free-water: moderate-
strong agreement (R2 ≈ 0.50 − 0.60) with small, consistent negative intercepts (≈ −0.04)
and slopes < 1 reflecting DBM’s broader fast-diffusivity band.

erential attenuation of faster water region with age; In white matter the pattern flips:
the strongest effect is at the slowest quartile (r = −0.54, −0.63, −0.65), consistent with
a growing slow/restricted pool as myelination progresses. As expected from the model
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Figure 4.6 Developmental trajectories of key DBM/DTI metrics across tissues. (a) Fast-water
(FWE); (b) Fast-water (DBM); (c) MD (DTI); (d) MD (DBM); (e) FA (DTI); (f) Spectrum
width (FWHMright).
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definitions, DBM fast-water shows weaker but consistent declines (r = −0.26 to −0.31)
compared with the two-compartment FWE index. DBM shape metrics align with this
picture: FWHM right edge decreases and skewness moves toward zero, pointing to a
narrowing spectrum and a shrinking fast tail with age.

(3) Diffusivity-related metrics decrease and anisotropy-related metrics increase: DTI metrics
(AD, RD and MD) and DBM MD showed negative age effects in all tissues, consistent
with the maturational restriction of water mobility. DBM fadj and FA DTI increased
with age in deep GM and WM (FA: r ≈ +0.70 in both; fadj: r ≈ +0.63 in deep GM,
+0.55 in WM) but decreased in cortical GM (FA: r ≈ −0.59; fadj: r ≈ −0.40), reflecting
the tissue ordering expected at term equivalent age.

(4) Spectral-shape and positional metrics indicated a progressive sharpening and leftward
re-centring of the isotropic spectrum: the fast-tail width decreased (FWHMright: r ≈
−0.71 deep GM; −0.51 WM), skewness moved toward zero (WM: r ≈ +0.60), and DBM
positional indices (ddomain, diffusion quartiles) were strongly negative in WM (r ≈ −0.66
for ddomain; −0.65, −0.63, −0.54 for 1/4, 1/2, 3/4 diffusion).

4.3.4 DTI protocol comparability: dMRI-25-dir versus dMRI-32-dir

We evaluated the agreement between the CHUSJ dMRI-25-direction protocol and a clinical
dMRI-32-direction protocol in pairs of infants of the same session n = 45.

Regression agreement (Fig. 4.8) Scatter plots with dMRI-32-dir on the x−axis and dMRI-
25-dir on the y−axis showed near-identity for diffusivity (β = 0.98 − 0.99, α = 0.03 − 0.04,
R2 = 0.87− 0.95) and a modest scaling for FA (β = 0.88, α = 0.01, R2 = 0.59):

1. AD: y = 0.98x + 0.04, R2 = 0.87;

2. RD: y = 0.99x + 0.04, R2 = 0.95;

3. MD: y = 0.99x + 0.03, R2 = 0.95;

4. FA: y = 0.88x + 0.01, R2 = 0.59.

Thus, AD, RD and MD are essentially on the identity line, whereas FA from dMRI-25-dir is
slightly compressed at lower FA, as expected with fewer directions.

Bland–Altman analysis (Fig. 4.9) The Bland-Altman analysis showed minimal biases
between the dMRI-25-dir and dMRI-32-dir protocols in diffusivity (Fig. 4.9 a-c, 0.005 −
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Figure 4.7 Standardized age effects across tissues for DBM, DTI, and FWE metrics. Rows:
metric from DBM, DTI, FWE; Columns: cortical GM, deep GM, white matter regions.
Unit-less standardized effects r = sign(β)

√
R2 (signed Person’s correlation, cell color and

first line of the label) together with the variance explained were displayed each cell. Positive
r indicates an increase with age; negative r a decrease.

0.028 µm2/ms) and narrow limits of agreement 95% (≈ (−0.02, 0.08)), indicating the excellent
interchangeability of the dMRI-25−dir and dMRI-32−dir protocols; FA (Fig. 4.9 d) showed
a modest negative bias, reflecting the same slope compression seen in the regression.

Equivalence testing (Table 4.1) Two one-sided tests (TOST) with pre-specified bounds
(±0.05 µm2/ms for AD/RD/MD; ±0.02 for FA) confirmed statistical equivalence for all four
metrics. Ninety percent of the CI for the mean differences were completely within the limits
(e.g. MD: 0.020 [0.015, 0.026] µm2/ms; FA: 0.020 [0.015, 0.026], and both values one-sided p−
were < 0.001 in each case.

Reliability test (Table 4.2) Intraclass correlations (two-way mixed, absolute-agreement,
single-measure; ICC(A,1)) were excellent for AD/MD/RD and moderate for FA: AD: 0.935
(95% CI [0.88, 0.96]); RD: 0.943 (95% CI [0.49, 0.98]); MD: 0.957 (95% CI [0.77, 0.98]); FA:
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Figure 4.8 Agreement of DTI metrics between CHUSJ 25-direction and 32-direction acqui-
sitions (same-session pairs, N = 45 infants). (a) AD: y = 0.98x + 0.04, R2 = 0.87; (b) RD:
y = 0.99x + 0.04, R2 = 0.95; (c) MD: y = 0.99x + 0.03, R2 = 0.95; (d) FA: y = 0.88x + 0.01,
R2 = 0.59. Subject-level white-matter means are plotted with 32−dir on the x−axis and
25−dir on the y−axis; each point is one infant.

Table 4.1 TOST equivalence between CHUSJ dMRI 25-direction and 32-direction DTI met-
rics (paired; N = 45). Mean difference is ∆ = dMRI-25-dir− dMRI-32-dir. AD/RD/MD in
µm2/ms; FA unitless. p-values < 0.001 are shown as “< 0.001”.

Metric Bounds Mean Diff. SD 90% CI plower pupper Equivalent

AD [−0.050, 0.050] +0.005 0.033 [−0.003, +0.013] < 0.001 < 0.001 Yes
RD [−0.050, 0.050] +0.029 0.024 [+0.022, +0.035] < 0.001 < 0.001 Yes
MD [−0.050, 0.050] +0.020 0.023 [+0.015, +0.026] < 0.001 < 0.001 Yes
FA [−0.020, 0.020] −0.011 0.015 [−0.015, −0.008] < 0.001 < 0.001 Yes

0.664 (95% CI [0.24, 0.84]).

The consistency ICCs (ICC (C,1)) were similarly high for diffusivity (0.975 for RD/MD) and
higher than the absolute agreement for FA (0.757), indicating a stable rank order even where
the absolute FA differs slightly.

4.4 Discussion

This chapter study establishes the Diffusion Bubble Model as a robust and mechanistically
informative framework for neonatal diffusion MRI. Using a staged validation strategy: pa-
rameter optimization, controlled simulations, and in vivo application, we show that DBM
that DBM effectively decouples isotropic diffusion changes from anisotropic effects, providing
a spectrally resolved characterization of microstructural development and pathology.
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Figure 4.9 Bland–Altman agreement between CHUSJ 25-direction and 32-direction DTI met-
rics (N = 45 infants, same-session pairs). Subject-level white-matter means are plotted as
difference ∆ = 25 − dir − 32 − dir versus mean (25-dir + 32-dir)/2. the solid line marks
the mean bias; dashed lines show the 95% limits of agreement (LOA = bias± 1.96 SD); the
dotted line is zero difference. (a) AD (µm2/ms); (b) RD (µm2/ms); (c) MD (µm2/ms); (d)
FA (unitless). Each point is one infant.

4.4.1 Experimental validation confirms core DBM principles

Our systematic experimental approach validated three fundamental properties of DBM:

Anisotropy robustness: The simulation experiment with fixed MD and varying FA con-
firmed DBM’s core competency: the isotropic spectrum remained effectively invariant to
anisotropy changes, while the anisotropy-adjusted fraction (fadj) strongly tracked DTI-derived
FA (β = 0.78, R2 = 0.95). This validates DBM’s ability to isolate isotropic signals from
orientation-related effects, a crucial advantage over conventional metrics that conflate these
dimensions. Practically, it underscores that b-value bandwidth is the primary driver for
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Table 4.2 Intraclass correlation between 25-dir and 32-dir protocols at the subject level.
ICC(A,1): two-way mixed, absolute agreement, single measure. ICC(C,1): two-way mixed,
consistency, single measure. Interpretation: < 0.50 poor, 0.50 − 0.75 moderate, 0.75 − 0.90
good, > 0.90 excellent [182].

Metric ICC(A,1) ICC(C,1) Interpretation
Estimate 95% CI p Estimate 95% CI p

AD 0.935 [0.88, 0.96] < 0.001 0.935 [0.88, 0.96] < 0.001 Excellent
RD 0.943 [0.49, 0.98] < 0.001 0.975 [0.95, 0.99] < 0.001 Excellent
MD 0.957 [0.77, 0.98] < 0.001 0.975 [0.95, 0.99] < 0.001 Excellent
FA 0.664 [0.24, 0.84] < 0.001 0.757 [0.60, 0.86] < 0.001 Moderate

reconstructing the isotropic spectrum, whereas dense angular sampling is less critical for
this specific target, even though it remains important for orientation-resolved modeling and
tractography [23,25,27].

Fraction recoverability: Two-pool mixture simulations showed high-fidelity recovery of
programmed fast fractions across the full physiological range (R2 = 0.99-0.997) in both purely
isotropic and anisotropic environments, supporting the use of DBM metrics and spectrum as
geometry-light, biologically meaningful readouts. Because increases in restricted components
often reflect higher cellularity, reduced extracellular space, or reactive gliosis, whereas changes
in fast-diffusion water track fluid-rich compartments and edema [25,27, 50, 127,183], DBM’s
spectral parameters are well positioned to index these processes that underlie scalar DTI
changes.

In vivo correspondence: The strong linear relationships between DBM and established
metrics (DBMMD vs. MDDTI: R2 up to 0.96; ffastDBM vs. ffastF W E: slope near unity) provide
crucial convergent validity. Rather than proposing to replace conventional metrics, DBM
complements them by adding spectral specificity while maintaining conceptual alignment.

4.4.2 Spectral signatures reveal tissue-specific maturational patterns

Across 248 neonates, DBM revealed distinct spectral fingerprints by tissue class: white matter
exhibited narrower, right-shifted spectra, whereas cortical gray matter showed broader spec-
tra with more prominent fast tails. We observed a monotonic decline in DBM fast fraction
across cortical GM, WM, and deep GM, with a reproducible ordering: GM > WM > deep
GM at a give age. This ordering is physiologically plausible: cortical GM in late gestation has
the largest extracellular compartment and prominent CSF partial-volume at gyral crowns,
WM is progressively reducing free-water content as pre-myelinating oligodendrocytes prolif-
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erate, and deep GM (e.g., thalamus, basal ganglia) is earlier-maturing and comparatively
more cellular, yielding the smallest fast-water pool [4, 10, 184–187]. The observed decline in
fast fraction aligns with reports of extracellular-space contraction and contemporaneous MD
decreases / FA increases during late gestation, as well as prior spectrum/FWE-style anal-
yses showing that separating the high-diffusivity isotropic signal improves biological speci-
ficity [62,106,188].

DBM also helps resolve a long-standing ambiguity in neonatal diffusion imaging: WM MD
> GM WM (with deep GM close to cortical GM), is commonly reported, but the tensor
average cannot reveal where this difference arises along the diffusivity axis. DBM shows
that the WM–GM MD gap is driven primarily by a right-shift of the spectral peak in WM,
not by a larger fast-water tail, indicating more hindered and less restricted tissue-dominated
diffusion in WM relative to GM at this age rather than frank free-water excess [10,62,185]. By
preserving the entire isotropic distribution rather than collapsing it to a single “free-water”
pool, DBM clarifies the mechanistic source of the MD contrast [181,189].

Age-trajectory analyses from 33 to 43 weeks PMA further showed regionalized spectral local-
ization of maturation: deep gray matter changes were most strongly expressed at the fast-tail
quartile (r ≈ −0.72), consistent with early contraction of fluid-rich components in thalamus
and basal ganglia, whereas in WM the most pronounced changes occurred toward the slow-
est quartile (r ≈ −0.65), compatible with increasing restriction due to axonal packing and
pre-myelination [4,186,187]. Importantly, the FA trajectories diverged by tissue: cortical GM
FA decreased linearly with age, plausibly reflecting dendritic arborization and increasing ori-
entation dispersion that reduce anisotropy in the cortical ribbon, while deep GM and lobar
WM FA increased linearly, with deep GM often exceeding lobar-average WM within this win-
dow due to earlier maturation and coherent thalamocortical projections, even though major
WM tracts (e.g., internal capsule) can display high FA locally [4,10,186,187,190]. Addition-
ally, these patterns support a posterior-to-anterior hierarchy and a timing-shift account of
prematurity effects developed in the next chapter, while illustrating how spectral localization
sharpens inferences that would otherwise be flattened by tensor averages [88,190,191]. This
spectral resolution offers a more nuanced view of maturational processes than the uniform
decreases in MD (and increases in FA) captured by DTI alone.

4.4.3 Clinical translation and protocol considerations

The current 25-point (dMRI-25-dir) protocol (≈ 4 min) fits the constraints of neonatal time
and SNR while supporting DTI and providing sufficient b-value leverage for DBM’s isotropic
spectrum. Directions follow an icosahedral scheme for stable tensor estimation under limited
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time [192], with low–moderate b-values (≤ 800s/mm2) to maintain SNR and safety in new-
borns. The idea of using 25 DWI points with linearly increasing b value but in different direc-
tion is from DBSI [193]. In practice, this captures the fast-diffusion tail that DBM is sensitive
to and yields acceptable DTI maps. The agreement with a standard 32-direction clinical pro-
tocol was strong for diffusivity metrics (R2 = 0.87–0.95, narrow Bland–Altman limits; ICC
up to 0.96), supporting regional analyses, while a modest FA compression (y = 0.88x + 0.01)
advises caution for absolute FA comparisons across protocols [22].

Practical caveats First, tractography has not been validated with 25 directions; orienta-
tion estimation depends critically on angular density, and more directions may be required
for reliable fiber reconstructions. Second, the simulations here were multi-shell, while the
clinical scheme is not multi-shell; a systematic comparison of DBM spectra between clin-
ical used acquisition and multi-shell acquisitions is needed to quantify protocol—induced
changes and establish harmonization procedures. Short, targeted optimization–directional
uniformity in direction, b-value placement tailored to the end points of the DBM, and
cross-protocol calibration—should further improve performance without sacrificing clinical
feasibility [24,193].

4.4.4 Limitation and future direction

Despite strong validation, several limitations of the current implementation of the DBM
warrant consideration. (i) Validation relied on low–to–moderate b-values; model performance
under higher diffusion weighting, broader b-value bandwidth or denser angular sampling
remains to be systematically evaluated. (ii) A single fixed prolate tensor was used for the
anisotropy adjustment. Although sufficient for neonatal tissue with modest FA, coupling
effects may bias the recovered isotropic spectrum in regions of high anisotropy. Adaptive or
multi-basis corrections could improve robustness across tissue types. (iii) Benchmarks were
limited to DTI and FWE. Future comparisons with other microstructural models (such as
NODDI and RSI) will help delineate DBM’s unique sensitivity profile. (iv) Validation focused
on late gestation infants; earlier developmental stages and broader pathological conditions
were not explored.

Future work should therefore go in several directions. (i) Optimize the placement of b-values
and angular sampling to jointly serve DTI and DBM to maximize clinical efficiency. (ii) De-
velop region–aware anisotropy adjustments (e.g., small number of tensors or data–driven and
adaptive axial diffusivity) to improve spectrum fidelity across tissue classes. (iii) Compare
DBM to NODDI, RSI and related frameworks under matched acquisitions. (iv) Translating
DBM into open-source, harmonized pipelines for multi-site neonatal cohorts to establish nor-
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mative references and to link spectral metrics with long-term neuro-developmental outcomes.

4.5 Conclusion

This chapter provides multi-level evidence that the Diffusion Bubble Model offers a spec-
trally localized, biologically interpretable characterization of neonatal brain microstructure.
Simulations demonstrated that DBM’s isotropic spectrum is robust to anisotropy at fixed
MD while an anisotropy-adjusted term tracks FA; mixture experiments showed high-fidelity
recovery of compartment fractions across the physiological range; and in-vivo analyses re-
vealed tissue-specific spectral patterns and age-dependent shifts that align with, yet surpass
in specificity, conventional DTI summaries. An efficient 25-direction acquisition delivered
diffusivity metrics in close agreement with a standard 32-direction protocol, underscoring
clinical viability.

Beyond confirming expected trends, DBM clarifies where along the diffusivity axis maturation
and pathology emerge—disentangling peak shifts from fast-tail changes that tensor averages
cannot resolve. This capacity to localize effects within the isotropic spectrum elevates the
biological meaning of diffusion readouts and provides a consistent bridge to complementary
models. The technical and biological foundations established here enable the next chapters,
where DBM is paired with automated segmentation for large-scale analyses and applied to
both typical maturation and neonatal brain injury in preterm and term infants.
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CHAPTER 5 RESULT 2: SEGMENTATION BASED ON DIFFUSION
MAGNETIC RESONANCE IMAGING

5.1 Introduction

Magnetic resonance imaging (MRI) is an non-invasive tool for characterizing neonatal brain
tissues and structures [10,23]. In particular, diffusion magnetic resonance imaging (dMRI) is
widely utilized in neonatal practice, offering unique sensitivity to tissue microstructure at a
neurocellular scale [16,23]. Accurate multiclass segmentation of the neonatal brain is essential
for the quantitative analysis of neonatal brain development, disease, and injury. However, this
task remains particularly challenging due to the inherently low tissue contrast and high noise
levels in neonatal scans, compounded by the frequent absence of high-resolution anatomical
images in clinical settings [194,195].

In recent years, deep convolutional neural networks have dramatically advanced the state of
the art in brain MRI segmentation of different age groups, effectively displacing traditional
methods such as time-consuming manual delineation and threshold-based techniques prone
to high false positive rates [140, 156, 161, 194, 196]. This powerful technique has shown suc-
cess in a wide range of tasks, from basic tissue classification to the segmentation of complex
anatomical structures [168, 196–198]. However, in the newborn population, research efforts
remain predominantly focused on structural imaging (T1- and T2-weighted), with consider-
ably fewer studies venturing to train models directly in diffusion space [10, 162, 163]. This
gap is noteworthy, as clinical dMRI—often comprising single- or few-shell diffusion tensor
imaging (DTI) acquisitions—is widely available and inherently coregistered with the quanti-
tative maps (e.g., mean diffusivity, fractional anisotropy) used for downstream analysis [11].
A diffusion-native segmentation strategy could reduce interpolation and registration error,
improve fidelity for diffusion-based studies, and expand inclusion when structural images are
degraded or missing [165, 194, 195]. This scenario is a common clinical predicament: In our
cohort, for example, subjects 14/88 (16.0%) did not have T2w images or the quality of T2w is
not good enough for segmentation, but had high-quality dMRI data, making them ineligible
for conventional segmentation pipelines.

To address this methodological gap and practical need, this study aims to develop a diffusion-
only segmentation pipeline capable of providing reliable neonatal brain tissue labels across
scanners and protocols. In addition, we seek to rigorously benchmark its performance against
a conventional T2w-based baseline using both in-domain data (the developing Human Con-
nectome Project, dHCP) and cross-scanner data (CHU Sainte-Justine Hospital, CHUSJ). To
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this end, we train a diffusion-only-based nnU-Net model that consumes DTI-derived maps
(axial, radial, and mean diffusivity, and fractional anisotropy, namely AD, RD, MD, and FA)
to predict anatomical labels directly in the native dMRI space. A T2w baseline nnU-Net
model, trained under identical supervision and framework, serves as a baseline, allowing a
controlled comparison of the intrinsic information content and generalization capacity of each
modality.

We hypothesize that the diffusion-only model will not demonstrate poorer performance com-
pared to the T2w baseline on internal data, while achieving better generalization on external
data, due to elimination of intersequence registration errors and improved inherent alignment
with diffusion-derived quantitative contrasts [170]. This work not only validates an alterna-
tive segmentation pathway, but also promises to rescue valuable clinical data that would
otherwise be excluded from quantitative analysis.

5.2 Method

5.2.1 Datasets and cohort definition

Internal dataset (training/validation/testing) (Table 5.1): We used the developing
Human Connectome Project data (dHCP, Release 2, scan age between 37 and 43 weeks
GA) [103, 162]. Subjects passed quality control with radiology review socre 1–2 for dMRI
and T2w. Train, validation, and test partitions were made at the subject level (no slice and
scan leakage).

External dataset (hold-out generalization) (Table 5.1): We evaluated on prospectively
acquired infants at CHU Sainte-Justine (CHUSJ, Montreal) scanned on GE Discovery MR750
and Siemens Skyra systems. Each session included a research dMRI-25-dir sequence and,
when available, a routine clinical single-shell dMRI-32-dir sequence plus a clinical T2w. For
this chapter, the two CHUSJ cohorts were combined into a single external test set; no further
split or tuning was performed on CHUSJ. When both protocols were available for a subject,
only the dMRI-25-dir research was used.

5.2.2 MRI acquisition

dHCP Protocol: T2w images were acquired using a fast spin-echo sequence with 0.5 mm
isotropic resolution. dMRI was a multi-shell acquisition, including 20 b0 and 3 non-zero
shells (including 400/1000/2600 s/mm2), with voxel size 1.17 × 1.17 × 1.50 mm3. Detailed
acquisition parameters are in Table 5.2.
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Table 5.1 Demographic characteristics of the three neonatal cohorts used for model devel-
opment and evaluation. dHCP-T-Train is the internal dHCP cohorts used for training,
validation, and internal testing. SJ-T-Test1/2 are out-of-center cohorts scanned at CHU
Sainte-Justine on GE and Siemens systems, respectively, serving as external test sets. Values
are mean ± SD. GA = gestational age; N = number of subjects.

Cohort N Gestational age (wk) Birth weight Scanner Study role
At birth At scan kg

dHCP-T-Train 152 39.4± 0.9 40.9± 1.4 3.30± 0.57 Philips Achieva Train/val/test
SJ-T-Test1 24 39.3± 0.8 40.8± 1.3 3.30± 0.57 GE MR750 External test
SJ-T-Test2 24 39.4± 0.9 40.9± 1.4 3.30± 0.57 Siemens Skyra External test

CHUSJ Protocol: Both clinical (dMRI-32-dir) and research (dMRI-25-dir) diffusion se-
quences were acquired with 2.0 mm isotropic voxels, TR/TE 8000/81 msand an anterior-
posterior (AP) phase-encoding direction with a single reverse-phase (PA) b0 volume for
susceptibility distortion correction. Routine clinical T2w images were acquired alongside the
diffusion scans. Full parameters are listed in Table 5.2.

Table 5.2 MRI acquisition parameters for the internal dHCP cohorts and external CHU
Sainte-Justine (SJ, CHUSJ) cohorts. Each newborn was scanned on a single system (GE
or Siemens) but received three sequences: a high-resolution TurboRARE T2-weighted scan
and two diffusion scans: one with 32 gradient directions at b = 700 s/mm2 and one with 25
directions at b ≤ 800 s/mm2. All sequences share the same spatial resolution to match the
dHCP diffusion voxel size and facilitate cross-scanner comparison.

Scanner (3T) Sequence Resolution (mm3) TR/TE (ms) Diffusion scheme

Philips Achieva T2w (FSE) 0.50× 0.50× 0.50 12 000/156 –
2D EPI (dMRI-3-shell) 1.17× 1.17× 1.50 3 800/90 20 b0 + b400, 1000, 2600

GE Discovery 750
T2w (TurboRARE) 1.0× 0.75× 0.75 5 067/160 –

2D EPI (dMRI-32-dir) 2.00× 2.00× 2.00 8 000/81 2 b0 + 32 dir b = 700
2D EPI (dMRI-25-dir) 2.00× 2.00× 2.00 8 000/81 3 b0 + 25 dir, b ≤ 800

Siemens Skyra
T2w (TurboRARE) 0.625× 0.625× 2.0 11 270/90 –

2D EPI (dMRI-32-dir) 2.00× 2.00× 2.00 8 000/81 2 b0 +32 dir b = 700
2D EPI (dMRI-25-dir) 2.00× 2.00× 2.00 8 000/81 3 b0 +25 dir, b ≤ 800

5.2.3 Preprocessing

Structural (T2w) Preprocessing T2w images underwent the following steps: (i) Bias-
field correction using N4ITK and skull-stripping; (ii) Segmentation with Draw-EM to obtain
the standard 87-label neonatal atlas and the companion 9-tissue atlas [162, 177]; (iii) For
CHUSJ, T2w volumes were optionally reconstructed to isotropic spacing using a validated
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super-resolution procedure when needed [199, 200]; the same Draw-EM pipeline was then
applied [162,177].

Diffusion (dMRI) Preprocessing dMRI data were processed as follows: (i) Denoising
(dHCP: per consortium pipeline; CHUSJ: Patch2Self [201]); (ii) Motion/eddy-current cor-
rection with outlier replacement; susceptibility correction with topup/eddy using the PA
b0 field [104]. Gradient reorientation and table consistency checks were applied [103, 162].
(iii) Resampling to the nnU-Net target spacing (dMRI space) kept consistent within each
dataset. (iv) DTI fitting with weighted least squares (DIPY 1.8.0) [179]. To ensure pro-
tocol comparability with CHUSJ single-shell acquisitions, dHCP tensors were fit using b ≤
1000 s/mm2 (the higher-b shell was excluded for DTI reconstruction). (v) Scalar maps AD,
RD, MD, and FA were computed for all subjects

Registration: To guarantee identical supervision across modalities, the Draw-EM T2w seg-
mentations were transformed to dMRI b0 space via rigid + nonlinear registration (ANTs) [103,
202]. Label interpolation used nearest-neighbor. These dMRI-space labels served as ground
truth for both the diffusion-based and the T2w-based models. All transformations were saved
for reproducibility.

5.2.4 Label definitions and model inputs

Labels The 87 Draw-EM regions were merged across hemispheres to yield 44 anatomical
labels (Table A.4). For hierarchical evaluation, these were further aggregated into 15 lo-
bar/structure groups and 8 fundamental tissue classes (WM, cortical GM, deep GM, cere-
bellum, brainstem, hippo-amyg, ventricles, CSF) (Table A.5). A complete label mapping is
provided in the Supplementary Materials (link).

Model inputs Two distinct input configurations were used:

1. dMRI model: A 4-channel input comprising the four simple DTI-derived metrics: AD,
RD, MD, and FA maps. Each channel was z-scored within the brain mask on a per-
subject basis.

2. T2w baseline: A single-channel input of the T2w image, identically z-scored within the
brain mask.

Critically, both models were trained to predict labels in the native dMRI space, ensuring an
identical evaluation framework.

https://drive.google.com/file/d/1QFDI25eNjVwe3_TDJAtrkJ6S9Fqa9Djm/view?usp=sharing
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5.2.5 Network architecture, training and inference

We used the nnU-Net v2 framework, which automatically configures key parameters such as
patch size, network topology, and training schedule based on input data. The core architec-
ture was a 3D full-resolution U-Net with the following specifics:

1. Architecture: A five-stage encoder-decoder cascade. Each stage consisted of two 3×3×3
convolutional layers, followed by instance normalization and Leaky ReLU activation
(slope = 0.01). The number of features started at 32 in the first stage and doubled at
each downsampling step (32→ 64→ 128→ 256→ 320), mirroring in the decoder.

2. Optimization: Training used stochastic gradient descent (SGD) with Nesterov momen-
tum 0.99; The initial learning rate was 0.01 with polynomial decay (power 0.9). The
loss function was an equally weighted sum of Soft Dice loss and cross-entropy loss
(Loss = 0.5 × Soft-Dice + 0.5 × cross-entropy). Mixed-precision training was used to
accelerate the computation.

3. Cross-validation and ensembling inference: Models were trained using a 5-fold cross-
validation scheme on the internal dHCP dataset. For final inference, an ensemble of the
five cross-validation models was created by averaging their softmax probability outputs.

Segmentation accuracy was evaluated voxel-wise across three anatomical hierarchies: the
primary 44-label set, the 15-group aggregation, and the 9-tissue map. We report the Dice
Similarity Coefficient (Dice) as the primary endpoint, supplemented by Precision, Recall,
95th percentile Hausdorff Distance (HD95), and Average Surface Distance (ASD). Metrics
were calculated for each subject and summarized throughout the cohort as median and in-
terquartile range (IQR), unless otherwise stated.

All models were trained on NVIDIA RTX-3060 GPUs (≥ 8 GB). The software environment
included PyTorch v2.7.1, DIPY 1.8.0. A fixed random seed (42) was used for all data splitting
and stochastic processes.

5.2.6 Experimental design and statistical analysis

To verify stable optimization and guard against fold idiosyncrasies, we performed five-fold
cross-validation on the training/validation split and reported the mean and standard devia-
tion of performance across folds. The final hypothesis tests and error analyzes were conducted
in held-out internal (dHCP) and external (CHUSJ) test sets that were not used for training
or model selection.
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To test our hypothesis that diffusion-only model is no worse than the T2w baseline model
in the internal test, a paired one-sided t-test (Dicediffusion ≥ DiceT2w, p < 0.05, if it does
not meet the norm distribution, Wilcoxon would be used) was performed to compare the
differences of all test subjects using two models.

To test our hypothesis that diffusion only model is better than T2w baseline model in external
test, a paired one-sided t-test (Dicediffusion > DiceT2w, p < 0.05, if it does not meet the norm
distribution, Wilcoxon would be used) was performed to compare the differences of all test
subjects using two models with p < 0.05.

In addition, to better evaluate the dMRI performance, the global performance was profiled
by reporting the mean and standard deviation for all metrics across the cohort. Further-
more, a detailed anatomical breakdown was performed by aggregating the 44 labels into
14 key anatomical regions and 8 fundamental tissue classes, allowing us to identify specific
structures where each model excelled or faltered. To diagnose the nature and source of seg-
mentation errors, particularly under domain shift, we generated and qualitatively analyzed
row-normalized confusion matrices for 8 tissue classes. Finally, a visual assessment of the
segmentation outlines was performed on representative subjects of both cohorts to provide a
qualitative context for the quantitative findings and to illustrate the practical implications
of the observed metric differences.

5.3 Results

5.3.1 Five-fold cross-validation performance

Table 5.3 Mean dice similarity coefficient (DSC) across five validation folds for each seg-
mentation protocol. “44 labels” = full anatomical parcellation; “9 tissues” = tissue-level
segmentation. Values range from 0 (no overlap) to 1 (perfect overlap).

Modality Individual Folds Mean Dice SD

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
T2w-baseline (44 labels) 0.93 0.93 0.93 0.92 0.92 0.93 0.001
dMRI-proposed (44 labels) 0.88 0.88 0.88 0.88 0.87 0.88 0.004
T2w-baseline (9 labels) 0.97 0.97 0.96 0.97 0.96 0.96 0.001
dMRI-proposed (9 labels) 0.94 0.94 0.94 0.94 0.93 0.94 0.002

Five-fold cross-validation on the training set (Table 5.3): Both networks generalize
consistently across folds:



68

1. For the full 44-label parcellation, the T2-weighted baseline averages 0.93 Dice with a
very small fold-to-fold SD (0.004), whereas the diffusion-only model achieves 0.88 Dice
(SD = 0.004). The around 5-percentage-point gap mirrors the outcome seen on the
internal held-out test set.

2. When the task is coarsened to nine main tissue classes, the performance increases for
both inputs: 0.96 Dice for the T2w model and 0.94 Dice for the dMRI model. The gain
reflects the reduced complexity of the boundary at the tissue level.

3. The narrow standard deviations (< 0.01) in all rows indicate that neither model is
sensitive to the particular fold split, suggesting that the training dataset is sufficiently
large and the optimization procedure is stable.

These cross-validation results confirm that the diffusion-based network is competitive with
the structural baseline, especially for tissue-level segmentation, while the T2w model retains
a small but consistent advantage for the finer 44-structure task.

5.3.2 Internal (dHCP) and external (CHUSJ) test-set performance

Table 5.4 Internal dHCP test-set: segmentation performance of the diffusion-only model
versus the T2-weighted baseline. Mean ± SD of six segmentation metrics computed over all
44 anatomical labels for the held-out dHCP test subjects. ∆Metric is the mean difference
(dMRI – T2w). One-sided paired t−tests were performed with a zero-point non-inferiority
margin (the diffusion model must equal or exceed baseline); “Decision” indicates whether
non-inferiority was achieved at α = 0.05 (✓= non-inferior, ✗ = not demonstrated).

Metric T2w-baseline dMRI-proposed ∆ Metric p−value Decision (test)
Dice 0.93± 0.00 0.88± 0.01 −0.05± 0.01 < 0.0001 Inferior ✓
Precision 0.93± 0.00 0.88± 0.01 −0.05± 0.01 < 0.0001 Inferior ✓
Recall 0.93± 0.00 0.88± 0.02 −0.05± 0.01 < 0.0001 Inferior ✓
HD95 (mm) 1.18± 0.01 1.21± 0.05 +0.04± 0.05 = 0.0014 Inferior ✓
ASD (mm) 0.15± 0.01 0.27± 0.03 +0.12± 0.03 < 0.0001 Inferior ✓

Across all six metrics (Table 5.4): Diffusion-only model scores lower than the structural
baseline; the mean Dice difference is −0.05. Because the non-inferiority margin was set
to 0 percentage-points (the dMRI model must be at least as good as T2w), the one-sided
tests reject non-inferiority for every metric. Boundary (HD95, ASD) and volumetric (VAE)
errors also favor the T2w pipeline. These results confirm that, inside the dHCP domain, the
structural model remains the stronger choice.
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Table 5.5 External CHUSJ test-set: segmentation performance of the diffusion-only model
(dMRI-proposed) versus the T2-weighted baseline (T2w-baseline). Mean ± SD of six segmen-
tation metrics computed over all 44 anatomical labels for the external CHUSJ test subjects.
∆Metric is the mean difference (dMRI – T2w). One-sided paired t−tests were performed
with a zero-point non-inferiority margin (the diffusion model must equal or exceed baseline);
“Decision” indicates whether non-inferiority was achieved at α = 0.05 (✓= non-inferior, ✗ =
not demonstrated).

Metric T2w-baseline dMRI-proposed ∆ Metric p−value Decision
Dice 0.71± 0.08 0.78± 0.02 0.07± 0.08 0.0001 Non-inferior ✓
Precision 0.81± 0.05 0.77± 0.02 −0.04± 0.05 0.9998 Non-inferior ✗

Recall 0.68± 0.08 0.79± 0.01 0.10± 0.08 < 0.0001 Non-inferior ✓
HD95 (mm) 2.79± 0.95 1.65± 0.09 −1.14± 0.93 < 0.0001 Non-inferior ✓
ASD (mm) 0.58± 0.16 0.58± 0.05 0.02± 0.15 0.7278 Non-inferior ✗

In the CHUSJ cross-scanner cohort, the diffusion model gains +0.07 Dice and +0.10 Recall
over the baseline T2w while reducing HD95 and VAE by approximately half. Given the 0 pp
margin, noninferiority is demonstrated for Dice, Recall, HD95 and VAE; Precision and ASD
remain statistically tied to the baseline. The diffusion model therefore generalizes better
across vendors, outperforming or matching the structural approach on four of six metrics
under the stricter zero-margin criterion.

On dHCP data (Fig. 5.1): Both the T2w-baseline and diffusion-only pipelines segment
lobar GM, WM and key subcortical structures with near-perfect accuracy. Dice never drops
below 0.87, and for 10 of 14 regions the diffusion model reaches the ≥ 0.90 “excellent”
threshold.

Applied to the CHUSJ cohort (Fig. 5.2): Performance decreases for both inputs, but
the drop is markedly greater for the structural pipeline: Only the four of fourteen diffusion
classes and the three of fourteen T2w classes remain above the 0.90 benchmark. However,
the diffusion model maintains a score ≥ 0.78 for every region and exceeds the structural
baseline in ten of fourteen classes. In particular, the brain stem Dice rises by 45% and the
hippocampus and amygdala by 16%, rescuing two areas where the T2w model suffers its
steepest losses.

In particular, the standard deviation of the T2w predictions widens noticeably in the subcor-
tical and frontal and posterior cortices, whereas the diffusion bars remain compact. These
patterns reinforce the conclusion that diffusion-derived contrast is both more accurate and
more stable under cross-scanner conditions.



70

Th
al

am
us

Ba
sa

lG
an

gl
ia

C
er

eb
el

lu
m

Br
ai

ns
te

m

Fr
on

ta
lW

M

Ve
nt

ri
cl

e-
C

SF

Pa
ri

et
al

W
M

Te
m

po
ra

lW
M

Fr
on

ta
lG

M

H
ip

po
-A

m
yg

O
cc

ip
it

al
W

M

O
cc

ip
it

al
G

M

Pa
ri

et
al

G
M

Te
m

po
ra

lG
M

C
or

pu
s

C
al

lo
.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
ic

e
C

oe
ffi

ci
en

t

T2w-baseline
dMRI-proposed

Figure 5.1 Per-class Dice coefficients for 14 aggregated regions – internal dHCP test set.
Horizontal bars are sorted in descending order of the T2-weighted Dice. Green and red
dotted lines mark Dice = 0.90 and Dice = 0.80, respectively. All T2w scores exceed 0.90;
the diffusion model also exceeds 0.90 in 10/14 regions and remains ≥ 0.87 elsewhere (corpus
callosum). The thalamus is the best-segmented structure (T2w 0.99, dMRI 0.98); the corpus
callosum is the most challenging (T2w 0.90, dMRI 0.87).
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Figure 5.2 Per-class Dice coefficients for the same 14 regions–external CHUSJ test set. Bars
appear in the same anatomical order as Fig. 5.1 to facilitate comparison. The vendor shift
lowers accuracy for both models, pushing several T2w classes below the 0.90 threshold. By
contrast, the diffusion-based model retains≥ 0.80 Dice in every region and surpasses the
structural baseline in hippocampus + amygdala, brain-stem, cerebellum, deep GM and CSF.
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5.3.3 Qualitative assessment of segmentation

Comparison of two pipelines on a representative dHCP subject (Figure 5.3): Both
pipelines trace the cortical ribbon with subvoxel precision (dark green arrow) and delineate
the thalamus cleanly (light green arrow); in the mid-sagittal slice the automated contours
even bridge a small discontinuity present in the Draw-EM reference. The near-identical
outlines visually confirm the high Dice scores reported for the internal set (Table 5.5).

Figure 5.3 Representative internal-cohort infant (dHCP, subject ses-31801): three axial slices
(left block) and three sagittal slices (right block). For each slice the four panels show (1)
axial-diffusivity map, (2) Draw-EM reference, (3) Diffusion MRI prediction (Dice = 0.89)
and (4) T2-weighted prediction (Dice = 0.94). Subject: Term male infant (ses-31801) were
scanned at 40 weeks 6 days GA and born at 40 weeks 2 days GA. Both models reproduce
a continuous cortical-GM ribbon (dark-green arrow) and accurately delineate the thalamus
region (light-green arrow); the mid-sagittal contours even correct a small gap in the manual
reference.

Typical segmentation quality in Siemens data from the external CHUSJ test set
(Fig. 5.4): The diffusion model maintains an unbroken cortical GM band, whereas the T2w
model shows clear fragmentation (dark green arrow). It also labels the thalamus correctly,
while the structural model misses a substantial portion of that nucleus (light green arrow).
These qualitative differences echo the numerical results in Table 5.5 (the dMRI segmentation
gains 7% Dice overall) and highlight the robustness of diffusion-based segmentation when
structural contrast deteriorates.
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Figure 5.4 Representative external-cohort infant (CHUSJ, Siemens Skyra): three axial slices
(left block) and three sagittal slices (right block). Within each slice, from left to right: axial
diffusivity map, ground-truth labels, dMRI-based prediction (Dice = 0.79), and T2w-based
prediction (Dice = 0.77). Subject: Male infant scanned at 41 weeks 6 days (GA); born at
34 weeks 5 days (GA). Green arrow: dMRI segmentation preserves a continuous cortical-
gray-matter ribbon that is fragmented in the T2w prediction. Light-green arrow: dMRI
segmentation correctly identifies the thalamus, which is missed by the T2w model.

5.3.4 Tissue-level performances

Internal dHCP set (Fig. 5.5): T2-weighted baseline outperforms the diffusion model in
all eight tissues. The largest Dice gaps occur in the cortical GM and CSF (−9.2% each),
whereas the deep GM and the cerebellum differ only by−2.3%. All differences are statistically
significant (p < 0.05).

The confusion matrix in Fig. 5.6 (a) confirms near-perfect performance: every class exceeds
the accuracy of 0.94 rows, with the highest cerebellum (0.99) and the lowest hippocampus-
amygdala (0.94). The diffusion model (Fig. 5.6 (b)) remains robust accuracies ≥ 0.86 and
cerebellum still 0.97, but shows more mixing between ventricles and CSF and between the
hippocampus-amygdala and adjacent cortical GM.

External CHUSJ set (Fig. 5.6, bottom row): Performance drops for both models when
applied to Siemens data. The T2w model is especially affected, losing 18% Dice overall and
showing three major failure modes:

1. The accuracy of the brain stem falls to 0.48, with 29% of its voxels mislabeled as
cerebellum (Fig. 5.6 (c)).
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Figure 5.5 Tissue-level Dice comparison on internal (dHCP) and external (CHUSJ) cohorts.
Dice similarity for eight neonatal tissue classes: (a) cortical gray matter, (b) white matter,
(c) deep gray matter, (d) hippocampus + amygdala, (e) cerebellum, (f) brain-stem, (g)
lateral ventricles, (h) extra-ventricular CSF. For each class two colour-coded box-plots are
shown: blue for T2w-based segmentation and red for dMRI-based segmentation. Left pair
= dHCP internal test set; right pair = CHUSJ external set. Boxes mark median ± IQR,
whiskers = 1.5× IQR, circled dots = outliers. Above each pair: percentage gain/loss of the
diffusion model relative to T2w and paired two-tailed t-test significance (∗ 0.01 < p < 0.05,
∗∗ 0.001 < p < 0.01, ∗ ∗ ∗ p < 0.001, no mark p > 0.05).
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2. The hippocampal + amygdala drops to 0.59, mislabeled mainly as cortical GM (17%)
and white matter (15%).

3. The cortical GM decreases to 0.76 due to leakage into white matter (14%) and CSF
(9%).

In contrast, the diffusion model improves or matches T2w in five of the eight tissues (deep
GM +0.5%, hippocampus + amygdala +16.1%, cerebellum +1.6%, brain stem +45.3%, CSF
+4.2%). Dice remains lower for cortical GM (−4.4%), white matter (−6.1%) and ventricles
(−5.1%), but the net effect is a statistically significant gain in mean Dice (+7%, Table 6-
2). The confusion matrix (Fig. 5.6 (d)) shows that the brain stem and cerebellum are now
well separated (row accuracy 0.83 and 0.97 respectively). Ventricles and CSF remain the
weakest classes (row accuracy 0.76 each), with most errors arising from partial-volume voxels
misassigned to cortical GM.

These figures visually support the quantitative tables:

1. Internal data: structural contrast still yields the highest Dice, but diffusion segmenta-
tion is competitive (≤ 5% gap) and anatomically coherent.

2. External data: diffusion contrast generalizes much better; the dMRI model rescues
brain stem and limbic structures that the T2-weighted model does not recognize in
single-shell scans.

3. Overall: diffusion-based segmentation offers a more scanner-agnostic solution, trading
a modest in-domain Dice loss for substantial cross-domain gains, an outcome critical
for multicenter neonatal studies.

5.4 Discussion

This chapter presents the development and validation of T2w and diffusion-only segmentation
models for the neonatal brain. We compared two otherwise identical 3D nnU-Net pipelines
for neonatal brain segmentation: T2w-baseline and diffusion-only model using DTI metrics,
across three levels (44 labels, 14 aggregated regions, 9 tissue classes) on an internal dHCP
set and a cross-scanner CHUSJ set. The results supported our hypothesis and showed that
both models achieve strong internal performance and acceptable external generalizability,
establishing a practical tool for enabling microstructure analysis in cohorts with missing
structural scans.
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(b) dMRI-internal test (dHCP)
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(c) T2w-external test (CHUSJ)
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(d) dMRI-external test (CHUSJ)

Figure 5.6 Row-normalized confusion matrices for eight tissue classes. Voxel-wise classifica-
tion performance for the two models. (a) T2w-based model – internal dHCP test set (blue);
(b) dMRI-based model – internal dHCP test set (red); (c) T2w-based model – external
CHUSJ test set (blue); (d) dMRI-based model – external CHUSJ test set (red). Rows =
ground-truth class, columns = predicted class. Values are normalised so each row sums to 1,
indicating the proportion of voxels from a given class assigned to every class.
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Internal and external performance Internally, both models performed competitively.
Our T2w segmentations (Dice > 0.90 across 14 labels) and dMRI results (Dice ≥ 0.87 on
10/14 labels) fall within and close to the established range reported in the infant neuroimaging
literature (Dice 0.90−0.96) [156,163]. When evaluated on the out-of-domain CHUSJ cohort,
performance declined (14−class: T2w 0.71, dMRI 0.78; 8-class: dMRI 0.87), reflecting the
typical pattern in multicenter neonatal studies: strong in-domain performance followed by a
measurable but manageable drop externally [163,203,204]. Our diffusion-only external Dice
of 0.78−0.87 aligns with reports from subcortical segmentation studies, which achieved Dice
of 0.78 externally, increasing to 0.85−0.90 after harmonization or fine-tuning [203]. Notably,
our task is more challenging with different imaging contrast, more labels, and neonatal data,
yet we achieved comparable generalization. This supports our claim that the dMRI model
generalizes acceptably despite neonatal-domain shifts caused by acquisition heterogeneity,
labeling protocols, and age-dependent contrast variations [162].

T2w outperforms dMRI internally but generalizes less well As expected, T2w MRI
outperformed diffusion-derived inputs on internal evaluation (44-label Dice 0.93 vs. 0.88).
This is attributable to several factors: (i) Neonatal structural pipelines are optimized for high-
resolution T2w anatomy, while diffusion labels are transferred via registration, introducing
residual distortion and label noise [177,205]. (ii) Tissue boundaries exhibit stronger contrast
in T2w than in scalar dMRI maps [206]. (iii) In addition, structural T2w volumes are
reconstructed to 0.5 mm isotropic while neonatal dMRI is typically 1.5 mm (1.17 × 1.17 ×
1.5 mm3 after preprocessing), increasing partial-volume effects [162].

However, the diffusion-only model generalized better externally, with a 10% Dice drop com-
pared to 22% for T2w. This is likely because T2w contrast is highly scanner-specific, while
DTI-derived scalars (FA, MD, AD, RD) are nominally intensity-standardized. Simple z-score
normalization may not fully harmonize T2w differences across sites. The Multi-site infant
T2w benchmarks also report notable cross site degradation unless explicit harmonization or
adaptation is used [163,203,204,207]. More surprising was that the diffusion model still lost
10% Dice, and we had expected a smaller drop (≤ 5%) despite relying on biophysical scalars
(FA, MD, AD, RD) that are nominally intensity-standardized. In practice (as also shown in
our result, Chapter 4), DTI metrics are protocol-dependent (b−values, number of directions,
TE/TR, gradient sampling) [22].

Limitations and future work

While our findings support the central hypotheses, several factors likely constrained perfor-
mance and generalization. (i) First, the dHCP-tuned structural pipeline underperformed
on CHUSJ T2w scans: when using Draw-EM to generate “ground truth” on CHUSJ data,
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contrast mismatches between the CHUSJ T2w images and the dHCP template occasionally
led to failed or suboptimal segmentations. This degrades label quality relative to dHCP and
can bias both training and evaluation. (ii) Resolution differences between CHUSJ (2.0 mm
isotropic) and dHCP (1.17 × 1.17 × 1.5 mm) may introduce resampling artifacts and shift
FA and MD distributions, further complicating fair comparison. (iii) Third, acquisition pro-
tocols differ: constrained by clinical workflow, CHUSJ uses a short (≈ 4 min) 25-direction,
lower-b scheme. Although all DTI metrics were reconstructed using only b ≤ 1000 s/mm2

for consistency, protocol-dependent variability in scalars likely remains and can affect model
transfer. (iv) Fourth, the external CHUSJ cohort contains a higher proportion of preterm
infants; given known microstructural immaturity at TEA in preterm-born infants, this al-
ters intensity and shape priors and can depress apparent external performance. (v) Finally,
computational limits (8 GB GPU) restricted augmentation diversity and batch size during
nnU-Net training, potentially hindering convergence to optimal hyperparameters.

Future directions Thus, in the future, We plan to (i) generate site-specific reference labels
at CHUSJ by refining Draw-EM with local intensity harmonization and template adapta-
tion, and to quantify label quality with inter-rater and replayability checks; (ii) We will
standardize evaluation resolution (single target grid) and report sensitivity to resampling
choices. (iii) Cross-protocol calibration will be pursued using multi-source training that in-
cludes 20–30% CHUSJ cases, complemented by domain adaptation and acquisition-aware
augmentations. (iv) Cohort composition will be balanced or stratified (preterm versus term)
to disentangle biological from domain effects, and downstream analyses will propagate seg-
mentation uncertainty to mitigate label-noise bias. (v) Lastly, scaling training on larger-
memory GPUs will enable richer augmentations and larger batches, which we expect to close
much of the remaining external generalization gap while preserving the practicality of a
dMRI-first workflow.

5.5 Conclusion

In conclusion, this study successfully developed and validated deep learning-based segmenta-
tion models for neonatal brain MRI, using both T2-weighted and diffusion-only inputs. The
T2w model achieved state-of-the-art internal accuracy, while the diffusion-only model offered
a compelling trade-off: a modest reduction in internal performance was offset by significantly
better generalization to external data. This is a critical advantage in heterogeneous, multi-
center clinical studies where structural scans are often unavailable or acquired under variable
protocols.

By providing a robust and accessible tool for tissue segmentation, this work directly supports
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the overarching aim of the thesis: to enable reproducible, large-scale microstructure analysis
in neonatal populations. The diffusion-only pipeline, in particular, ensures that advanced
models like DBM can be applied consistently across diverse cohorts, including those with
missing T2w data. In the following chapters, we leverage this foundational tool to investigate
both typical brain maturation and injury in preterm and term-born infants.



79

CHAPTER 6 RESULT 3: DBM FRAMEWORK APPLICATION I:
COMPARATIVE STUDY OF PRETERM- AND TERM-BORN INFANTS

6.1 Introduction

Preterm birth is the arrival of babies less than 37 weeks of gestational age and is a major public
health concern with a birth rate of around 10% worldwide in recent years [1]. It is associated
with an elevated risk of later motor, cognitive, language, and behavioral difficulties [85,
87, 95, 97, 100, 101]. Magnetic resonance imaging (MRI) performed at term equivalent age
(TEA; 40 weeks postmenstrual age, PMA) has become a standard window to assess early
brain health in premature babies, offering a clinically practical time point when sedation-free
images are more feasible and neuroanatomy is more mature [91, 92, 94]. However, despite
widespread use, the extent to which brain microstructure in preterm infants has “caught up”
to that of term-born peers in TEA remains debated and likely varies across tissue classes and
regions [88,89,99,101,106,107,109].

Diffusion MRI (dMRI) is a powerful tool for probing tissue microstructure on a cellular scale
non-invasively, linking the decay of the MRI signal to the random motion of water molec-
ular in brain tissues [16]. Diffusion tensor imaging (DTI), the most widely used one-tensor
dMRI model, has revealed general trends of decreasing mean diffusivity (MD) and increas-
ing fractional anisotropy (FA) during the preterm to TEA period [90, 109]. The model’s
inherent assumption of Gaussian diffusion is frequently violated, and its metrics are nonspe-
cific, conflating contributions from various diffusion levels. For instance, the decrease of MD
can be caused by fast water clearance progress or slow diffusion water increasing caused by
higher neuro cell density, or hindered diffusion water increasing caused by less ex-cellular
space during brain maturation. To solve this problem, several multicompartment models
based on DTI were developed, such as the NODDI, CHARMED and FWE model, which
usually assume that there are limit distinct diffusive components in brain tissue and can
be treated as a mixture of restricted, hindered, and fast diffusion independently [25,26,208].
However, the developing neonatal brain, characterized by a rapidly continuous water content,
axonal progress, different neuro-cell architecture, and changes, poses fundamental challenges
for these limited multicompartment models to capture the precise nature of maturational
differences [94].

Spectrum-based diffusion models aim to address this limitation by decomposing the diffusion
signal into distinct apparent diffusivity. Representative approaches include DSI, DBSI, RSI,
and spherical mean imaging spectrum (SMIS) methods [13,27,28,105]. Although promising,
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their translation to neonatal brain analysis is hampered by requirements for high b-values,
multi-shell sampling, longer acquisitions, and reconstruction complexity, which increase vul-
nerability to motion and limit clinical feasibility.

To bridge these limitations, we recently introduced the Diffusion Bubble Model (DBM), a
novel spectrum-based dMRI model that can indicate where the injury- and other cased-leaded
diffusion alteration occurs along its derived one-dimensional diffusion spectrum [24]. It has
been used to identify stages of neonatal brain injury by observing the different changes in
the tail and position of the diffusion spectrum [24]. Neonatal brain development that evolves
fast-water content, microstructural restriction, and clearance processes may also change the
diffusion spectrum in brain tissues. To date, DBM has not been applied to characterize the
preterm versus term microstructure at TEA.

Currently, several critical gaps persist in characterizing preterm brain maturation at TEA.
First, prior studies have predominantly focused on white matter tracts, leaving a system-
atic assessment of cortical gray matter and deep nuclei lacking. Second, most of the related
studies used DTI or compartment models (e.g., NODDI, DKI), there remains a need to
benchmark spectrum-based approaches, like DBM, under neonatal protocols against estab-
lished metrics. Third, many studies are based on retrospective designs, limiting the ability to
track longitudinal trajectories. Furthermore, although multiple reports confirm that preterm
brains at TEA remain less mature, with heterogeneity tied to gestational age at birth, the
fundamental nature of these differences is unclear. It is unknown whether they primarily
reflect a timing shift (a simple delay in maturation onset) or a rate difference (a persistently
slower pace of maturation), a distinction crucial for prognosis and intervention. Furthermore,
rapid volumetric changes around TEA can confound microstructural estimates, a factor that
is often not taken into account.

Objectives Leveraging our prospective cohort of preterm infants (scanned at 34 and 40
weeks PMA) and term-born controls (scanned at 40 weeks PMA), our general goal is to
apply DBM and segmentation developed to quantify regional maturation trajectories from
34 to 40 wk PMA. Specifically, we aim to:

1. Establish a comprehensive map of preterm-term microstructural differences at TEA
across cortical gray matter, deep gray matter nuclei, and white matter tracts, to resolve
controversies regarding the regional heterogeneity of catch-up;

2. Model longitudinal trajectories of microstructural development from 34 to 40 weeks
PMA in preterm infants, contrasting them against a term-born reference to empirically
distinguish between a pure timing shift and a persistent rate difference;
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3. Test the primary developmental mechanism by formally evaluating whether the ob-
served differences are better explained by the timing-shift or rate-difference hypothesis,
while rigorously controlling for volumetric confounds; and

4. Benchmark the added value of the Diffusion Bubble Model (DBM) against DTI by
quantitatively comparing their effect sizes and biological specificity in detecting residual
alterations under clinically feasible acquisition parameters.

Hypotheses We hypothesize that (i) Differences in microstructural maturation between 34
and 40 weeks of PMA are primarily explained by a timing shift (a uniform delay in the
onset of maturation), rather than a rate difference (a persistently slower pace), reflecting a
delayed but fundamentally intact postnatal development program. (ii) Residual microstruc-
tural gaps at TEA will be most pronounced in late-maturing association areas, particularly
frontal and temporal white matter and gray matter. The more mature regions have smaller
DBM positional metrics and fewer fast water fractions. (iii) DBM will detect these residual
alterations with greater sensitivity and biological specificity than DTI by revealing distinct
spectrum-localized shifts associated with processes such as altered axonal packing or extra-
cellular matrix development.

6.2 Method

6.2.1 Participants

We prospectively enrolled 67 unique healthy infants (46 preterm-born; 21 term-born) at
CHU Sainte-Justine Hospital (Montréal, Canada) from June 2021 to January 2025, with the
approval of the CHU Sainte-Justine Recearch Center Authority. Participants contributed to
three analysis groups defined by scan timepoint; note that preterm infants could contribute
to both the 34-week and 40-week scans.

Preterm infants - 34-week scan (PT-34W): Thirty-six preterm infants were scanned at ap-
proximately 34 weeks PMA. Two diffusion series were excluded due to a scanner intensity
scaling error that irreversibly corrupted the data, resulting in 34 analyzable scans.

Preterm infants-term-equivalent scan (PT-TEA): Thirty-five preterm infants were scanned
near 40 weeks PMA, including 25 returning infants from the PT-34W cohort and 10 newly
enrolled infants. One examination was unreconstructed due to uncompleted DICOM files,
resulting in 34 retained scans.

Term-born controls - 40-week scan (TC-40W): Twenty-one term-born infants were scanned
near 40 weeks PMA. One dataset exhibited the same intensity–rescaling artifact and was
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excluded, leaving 20 control scans.

In total, after quality control we retained 88 diffusion datasets across the three groups (PT-
34W: 34; PT-TEA: 34; TC-40W: 20). A subject-level index is provided in Table A.1, and
demographic characteristics are summarized in Table 6.1.

Table 6.1 Demographic and perinatal characteristics of study cohorts. PT-33W = preterm
infants scanned at 33 weeks wk GA; PT-TEA = same infants re-imaged at term-equivalent
age; TC-40W = term-born controls scanned at 40 wk GA. GA = gestational age; wk =
week(s); F/M = female/male. Values are mean ± SD except sex counts, which are number.

Group N (M/F) GA at birth (wk) GA at scan (wk) Weight (kg) PA at scan (wk)

PT-34W 34(19/15) 32.30± 1.85 34.03± 1.44 1.75± 0.42 1.73± 1.08
PT-TEA 34(19/15) 32.16± 2.22 40.14± 1.76 3.14± 0.54 7.98± 2.34
TC-40W 20(14/06) 39.37± 0.88 40.86± 1.39 3.30± 0.57 1.50± 0.98

6.2.2 MRI acquisition

MRI imaging was performed on 3T GE (Discovery MR750 ) and 3T Siemens (Skyra) systems
using a neonatal 32-channel head coil at CHU Sainte-Justine Hospital. Infants were fed,
swaddled (≈ 10 min), protected with ear defenders and silicone putty, and stabilized with a
vacuum bean bag. The total scanning time was limited to ≤ 45 min.

T2-weighted scans were acquired using fast spin-echo sequences, with TR/TE = 5067/160
ms and resolution 1.0 × 0.75 × 0.75 mm (GE scanner); with TR/TE = 11270/90 ms and
resolution 0.625× 0.625× 2 mm3 (Siemens scanner).

Diffusion MRI data was acquired using dMRI-25-dir (research protocol) with 3 b0, 25 differ-
ent b -values / directions with max b ≤ 800 s/mm2, anterior-posterior (AP) phase encoding
direction, TR/TE = 8000/81 ms and resolution 2.0× 2.0× 2.0 mm3. When time allowed, a
full reverse phase (PA) series was acquired with identical parameters; otherwise, a single PA
b0 was collected for susceptibility correction.

6.2.3 Data preprocessing

Raw diffusion-weighted images (DWIs) were first denoised using MP-PCA (Marchenko–Pastur
PCA) [178]. Susceptibility distortions were estimated with TOPUP from the acquired AP/PA
calibration data and applied to the DWIs [209]. Next, all DWI volumes were rigidly aligned
with a reference image b0 (typically the first b0) to mitigate the movement between volumes.
Finally, all volumes were resampled to the target resolution of 1.17× 1.17× 1.5 mm3 [179].
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DTI fitting used weighted least squares (DIPY v1.8.0), yielding AD, RD, MD and FA metric
maps [180]. DBM was fitted using the nonlinear anisotropic adjustment and the nonnegative
least squares optimization method to estimate the voxel-wise isotropic spectra (from 0 to
3.2 µm2/ms), with the positional and general metrics derived (see the list in Table 3.1).

For region-based analyzes, a diffusion-only deep learning segmentation (trained on DTI maps)
was used to produce 14 predefined ROIs covering lobar cortical GM and subjacent WM, deep
GM, and midline structures. For each ROI and scan, we extracted the mean value within
each ROI for all DBM and DTI metrics, as well as for absolute (V ) and intracranial-volume-
proportional (V/ICV ) volumetric measures.

The complete list of 14 ROIs is provided in Table A.5; The segmentation details can be found
in Chapter 5; The complete pre-processing workflow is summarized in Fig. 6.1.

DWI

PCA denoising

DWI denoised

Denoising

FSL TOPUP

Distortion correction

AP PA

corrected

Registration

Linear reg.

Non-linear

transform

DWIs

TOPUP b0 T2w

registered tissue seg.
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..
.

Segmentation

metric n

metric 1

..
.

Reconstruction

Figure 6.1 Overview of the Diffusion MRI Data Processing Pipeline. Example shown uses
sub-B054S1 (male infant), born at 38 weeks 2 days (GA) and scanned at 40 weeks 5 days
(PMA) on a 3T Siemens scanner in CHU Sainte-Justine Hospital. Segmentation maps were
used method in Chapter 5.

6.2.4 Experimental design and statistical analysis

To systematically address this chapter’s research objectives, we implemented a hierarchical
analytical strategy. This framework progresses from comprehensively mapping neonatal brain
group differences and developmental trajectories, to rigorously testing specific maturational
mechanisms, and concludes with a comparative evaluation of our microstructural modeling
approach.
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Comprehensive Mapping of Microstructure Maturation

To achieve the aim of comprehensive mapping of microstructural maturation, we first com-
puted standardized effect sizes for each ROI and dMRI metric: Hedges’ gav for longitudinal
catch-up (PT-34W → PT-TEA) and Hedges’ g for residual gaps at TEA (PT-TEA versus
TC-40W). We then assessed statistical significance using linear mixed-effects models (LMMs)
with a random intercept for subject for longitudinal contrasts, and ANCOVA (controlling
for PMA at scan) for cross-sectional contrasts. False discovery rate (FDR) correction was
applied within each metric family on all ROIs (q < 0.05). The results of this analysis are
visualized as annotated effect-size heatmaps, which were generated at two anatomical lev-
els to provide both a global overview and a system-level perspective aggregating ROIs into
functional panels.

Characterization of Volumetric Growth Patterns

This aim sought to delineate the contribution of macroscopic structural development, specif-
ically to separate absolute brain growth from proportional redistribution within the cranial
vault. We applied the same effect size and statistical modeling framework from Aim 1
to both absolute (V ) and intracranial-volume-proportional V/ICV volumes. This allowed
us to generate four key contrasts: absolute and proportional catch-up, and absolute and
proportional residual differences at TEA. Furthermore, to quantify growth rates in the
preterm brain prior to TEA, we fitted LMMs within the preterm cohort for each ROI
(log V ∼ PMAc + (1 | Subject)) , expressing slopes as percentage change per week, with
an analogous model for log(V/ICV ) to assess relative growth.

Disentangling Microstructure from Volume Confounds

The core purpose of this aim was to directly test our primary hypothesis regarding the
nature of maturational differences—specifically, whether they reflect a timing shift or a rate
difference that is independent of underlying volumetric changes. To this end, we fitted a
unified linear mixed-effects model across a broad PMA window (31-45 weeks) for each dMRI
metric, which included PMAc, Group, their interaction term (PMAc×Group), and log V as a
covariate to adjust for the ROI’s absolute volume. In this model, a significant interaction term
indicates a rate difference (i.e., different slopes of maturation), whereas a significant Group
effect in the absence of an interaction supports a timing shift (i.e., parallel trajectories with
an offset). We also performed sensitivity analyzes using V/ICV for volumetric adjustment.
FDR correction was applied within each metric family on all ROIs (q < 0.05).
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Benchmarking DBM against Standard DTI

To quantitatively assess the added value of the DBM framework relative to the clinical
standard of DTI, we compared the sensitivity of DBM and DTI by summarizing two key
metrics across all ROIs for both catch-up and TEA residual contrasts: the proportion of
statistically significant findings (FDR < 0.05) and the median absolute effect size (|g|). To
ensure the robustness of these comparisons, we estimated bootstrap confidence intervals for
the summaries and further decomposed the results by metric type and anatomical system to
attribute performance gains.

6.3 Results

6.3.1 Diffusion microstructure maturation: robust catch-up versus persistent
residual gaps

Our panoramic mapping of microstructural development (Fig. 6.2) revealed a fundamental
dissociation: preterm infants exhibit robust catch-up growth in the specific regions, yet show
persistent, anatomically distinct residual differences at term equivalent age comparing to
term controls. This pattern was further characterized by the complementary sensitivity of
DBM and DTI metrics.

DBM captures widespread development, particularly in deep & midline struc-
tures

PT-34W→PT-TEA (Catch-up) (Fig. 6.2 a): Longitudinal analysis within the preterm
cohort revealed a consistent pattern of maturational decline in diffusivity. The Diffusion
Bubble Model (DBM) proved particularly sensitive to these developmental changes, detecting
significant catch-up (FDR q < 0.05) in 55/112 (49%, median effect size 0.74) of ROI-metric
pairs, outperforming DTI’s 32/70 (46%, median effect size 0.75) despite a more stringent
multiple comparison burden.

Anatomically, the most robust catch-up was located in midline structures (e.g. corpus cal-
losum) with median |g| ≈ 0.80 and deep gray matter nuclei (e.g. thalamus) with median
|g| ≈ 0.54). Cortical gray matter (effect size ≈ 0.30) has the least maturation of the brain
diffusion microstructure, right after white matter (≈ 0.46).

Metrically, the DBM spectral marker D1/4 provided the broadest coverage, implicating 12 of
14 ROIs in the catch-up process.
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DTI highlights widespread residual microstructural gaps at TEA in lobar net-
works

PT-TEA vs. TC-40W (Residual gap at TEA) (Fig. 6.2 b): In contrast, the cross-
sectional comparison at TEA revealed a pervasive residual microstructural immaturity in the
preterm group. Here, conventional DTI diffusivity metrics demonstrated superior sensitivity,
with 69.6% (39/56, median |g| = 1.00) of cells surviving FDR correction compared to 50.0%
(63/126, median |g| = 0.83) for DBM. The anatomical distribution of these residual gaps
was starkly different from the catch-up pattern, being overwhelmingly concentrated in lobar
cortical gray matter and white matter (median |g| ≈ 0.93 and 0.82). The DTI metrics RD and
MD were nearly globally significant (12/14 ROIs, 13/14 ROIs), underscoring the extensive
nature of the residual differences in tissue organization at TEA.

The panoramic view highlights a posterior/WM-weighted catch-up and lobar GM/WM-
dominant TEA residual, with midline/deep nuclei prominent in catch-up (Table 6.2).
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Figure 6.2 Whole-brain overview (14 ROIs): microstructural maturation summarized by
Hedges’ g (unadjusted). (a) Longitudinal catch-up within preterm infants (PT-34W → PT-
TEA), effect size = Hedges’ gav (> 0 means PT-TEA > PT-34W). (b) Residual gap at
term-equivalent age (PT-TEA versus TC-40W), effect size = Hedges’ g computed as TC
− PT-TEA (> 0 means term controls higher). Rows: 14 ROIs ordered anterior–posterior
and grouped GM → WM → deep-GM → midline. Columns: 13 core metrics (4 DBM
positional, 5 DBM scalar/shape, 4 DTI). Color: cell color encodes effect size (red = higher
in the second group, blue = lower), clipped to ±1. Significance: gray dots mark ROI–metric
pairs remaining significant after BH–FDR within each panel and within metric family (DBM
and DTI separately) across all 14 rows (q < 0.05). Models: panel (a) value = timepoint +
(1|subject) mixed-effects; panel (b) ANCOVA with HC3 robust SEs.
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Table 6.2 System-level DBM versus DTI summaries on the panoramic 14-ROI heatmaps
(BH–FDR within metric). For each system and contrast we report significant cells (nsig),
total cells (nall), their proportion, and the median absolute effect size |g| across all cells and
across significant cells.

System Family nsig nall Proportion Median |g| (all / sig)
Catch-up (PT-34W→PT-TEA)

Lobar GM DBM 10 32 0.31 0.31 / 0.65
DTI 4 20 0.20 0.29 / 0.67

Lobar WM DBM 13 32 0.41 0.41 / 0.66
DTI 8 20 0.40 0.46 / 0.68

Subcortical GM DBM 15 24 0.62 0.53 / 0.70
DTI 10 15 0.67 0.61 / 0.66

Midline DBM 17 24 0.71 0.83 / 1.02
DTI 12 15 0.80 0.76 / 0.83

TEA residual (PT-TEA vs. TC)

Lobar GM DBM 19 32 0.59 0.75 / 0.94
DTI 16 20 0.80 1.15 / 1.23

Lobar WM DBM 18 32 0.56 0.69 / 0.80
DTI 20 20 1.00 1.13 / 1.13

Subcortical GM DBM 7 24 0.29 0.48 / 0.97
DTI 9 15 0.60 0.61 / 0.66

Midline DBM 7 24 0.29 0.56 / 0.67
DTI 8 15 0.53 0.57 / 0.66

6.3.2 Macroscopic volumetric catch-up is largely complete at TEA

Next, we sought to determine whether the observed microstructural differences could be
explained by macroscopic growth failure. We found that absolute brain volumes of preterm
infants demonstrated robust catch-up growth, converging with term-born controls by TEA.

Volumes: catch-up and residuals (Fig.6.3 a,b): Longitudinal analysis revealed rapid,
regionally heterogeneous growth in the preterm cohort. Lobar gray matter expanded most
vigorously (e.g., parietal GM Hedges’ gav = 3.78), substantially outpacing white matter
(e.g., parietal WM Hedges’ gav = 1.62). Crucially, at TEA, no regions showed significant
differences in absolute volumes after FDR correction, demonstrating complete macroscopic
volumetric catch-up.

Proportional volumes: catch-up and residuals (Fig.6.3 (c) and (d)) In proportional
terms (V/ICV), occipital GM, basal ganglia, thalamus, brainstem, and corpus callosum were
no longer significant, suggesting that their apparent growth largely tracked global intracranial
expansion rather than representing disproportionate regional changes.
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In TEA (PT-TEA versus TC-40W; Fig. 6.3 (c) and (d), second row of each subfigure), no
ROI survived BH–FDR correction in absolute volumes. In proportional volumes, however,
temporal GM, frontal WM, and temporal WM remained significant, indicating localized
residual lags relative to global brain growth. To clarify whether these residuals represent
slower ongoing growth (trajectory differences) or simply stable offsets, we next examined
age-associated growth rates using longitudinal mixed-effects models.
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Figure 6.3 Regional volume catch-up and residual gap: absolute (top) and proportional to
ICV (bottom). Effect size: color-coded Hedges’ gav for PT (PT-34W → PT-TEA) and g
for TEA (TC-40W versus PT-TEA), red/blue = higher/lower in the second group of each
contrast, gray dots = significant after BH–FDR (q < 0.05) within each subpanel across its
ROIs.

PMA-associated growth rates in regional volumes (Fig. 6.4): Within preterm infants,
absolute growth rates from mixed-effects regressions on log volume were largest in the cerebel-
lum (≈15%/week) and lobar GM (≈13–14%/week), moderate in lobar WM (≈5–6%/week),
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with CC and occipital WM not significant after FDR correction.

For proportional volume (V/ICV), gram matter increased(≈ 4–5%/week, while white matter
decreased typically ≈ −2.5 to −3.2%/week. The occipital white matter decreased largest
(≈ −8.2%/week), and the cerebellar increased fastest (≈5.3%/week) (Fig. 6.4).

These trajectories mirror the heat maps in showing that the cortical GM and the cerebellum
accelerate volume growth during late gestation, while WM expands more slowly. Together
with the nonsignificant absolute volume differences at TEA, this suggests that the residual
microstructure gaps observed in dMRI are unlikely to be explained by volumetric lag but
rather reflect tissue-level maturation processes beyond size growth.
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(a) Absolute growth rates
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(b) Relative growth rates

Figure 6.4 PMA-associated growth rates in regional volumes. Points show model-estimated
slopes from mixed-effects regressions on log volume within preterm infants (PT-34W and
PT-TEA): y=log(V)∼PMAc +(1|subj). Horizontal bars are 95% CIs. (a) Absolute slopes
(% change per week); (b) Relative slopes for proportional volume V/ICV (% change per week
relative to whole-brain growth). ROIs are grouped as lobar GM+WM (top) and subcorti-
cal+midline (bottom). See Table A.6 and Table A.7 for q values (BH–FDR across 14 ROIs).

6.3.3 Age-dependent trajectories of volume-adjusted dMRI metrics

Age-dependent trajectories (31 - 45 weeks GA) (Fig. 6.5): Linear mixed-effects models
(age × group) across the full 31–45 wk window showed largely (92.3%, 155/168) parallel
maturation in preterm and term infants, but 13 ROI-metric pairs showed a significantly
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different age slope (FDR-corrected q < 0.05; Fig. 6.5) in three patterns:

1. Generally, all significant interactions reflected a flatter slope in preterm-born infants.
No ROI–metric pair matured faster than the controls.

2. Anatomically, the effects clustered in the frontal and temporal tissues and in the white
matter of the occipital area.

3. Metrically, the differences were driven almost exclusively by the DBM fast diffusion
fraction, variance, and skewness.
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Figure 6.5 Direction and strength of Age × Group slope differences across regions and dif-
fusion metrics. Rows list the 14 ROIs (grey-matter, white-matter, deep-GM and mid-line
structures, anterior → posterior); columns list the 12 core DBM/DTI metrics. Cell colour
encodes the signed interaction effect. Red: Preterm slope is steeper than the term-control
slope and the metric changes faster per week; Blue: Preterm slope is flatter than the con-
trol slope (slower maturation). Deeper shades indicate stronger evidence, gray dots mark
ROI–metric pairs that remain significant after Benjamini–Hochberg correction (q < 0.05).

This pattern is illustrated by two representative trajectories (Fig. 6.6). In the temporal white
matter (Fig. 6.6 (a)), a late-maturing region, the fast-diffusion fraction declined at a signif-
icantly slower rate in preterm infants compared to term-born controls (−0.003 vs. −0.018
units/week, ∆ slope = −0.015 µm2/ms/week, q = 0.047), indicating a slower clearance of
free water or maturation of the extracellular space. In contrast, the thalamus (Fig. 6.6 (b)),
a deep gray matter structure that matures earlier, exhibited perfectly parallel trajectories in
mean diffusivity between groups (∆slope = −0.004 µm2/ms/week, q = 0.903). This direct



91

30 32 34 36 38 40 42 44 46
Age at scan (GA, weeks)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fa
st

di
ff

us
io

n
fr

ac
ti

on
∆ slope = 0.015 unit/wk PT34W

PTTEA
TC40W
PT34W-PTTEA fit
TC40W fit

(a) Temporal WM

30 32 34 36 38 40 42 44 46
Age at scan (GA, weeks)

0.0

0.5

1.0

1.5

2.0

2.5

M
D

D
B

M
[µ

m
2 /

m
s]

∆ slope = 0.004 unit/wk

PT34W
PTTEA
TC40W
PT34W-PTTEA fit
TC40W fit
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Figure 6.6 Age-related trajectories of two representative microstructural metrics and regions:
(a) Temporal-white-matter fast-diffusion fraction; (b) Thalamic mean diffusivity (DBM-MD).
Scatter points are individual scans: PT-34W (pink), PT-TEA (orange), and TC-40W (gray).
Solid lines depict the fitted mean trajectory for the pooled preterm cohort (orange) and for
term controls (gray); shaded ribbons are 95% confidence bands derived from linear mixed-
effects models.

comparison underscores that the ‘rate difference’ is not a global phenomenon, but is specifi-
cally localized to vulnerable late-maturing circuits, while the ‘timing shift’ hypothesis holds
for the majority of brain structures.

6.3.4 Complementary roles of DBM and DTI in developmental neuroimaging

DBM demonstrated superior sensitivity for detecting within-individual develop-
mental change (Fig. 6.7). It identified a larger proportion of significant catch-up effects
than DTI (DBM: 61/126,48%; DTI: 23/56, 41%) with a slightly higher median absolute effect
size (DBM: ˜|g| = 0.51; DTI: 0.46).

In contrast, DTI was more sensitive to persistent differences between cross-sectional groups in
TEA. It detected a significantly larger proportion of residual gaps (DTI: 29/56, 52%; DBM:
26/126, 21%) with substantially larger effect sizes (DTI: ˜|g| = 0.86; DBM: 0.65).

Robustness (Fig. A.3): Including CSF in the family-wise counting modestly increased de-
tection rates for both families but did not alter the rank ordering (DBM catch-up 68/135
(50%); DTI 26/60 (43%); DTI TEA 32/60 (53%); DBM TEA 34/135 (25%)). Unless oth-
erwise stated, CSF is excluded from the main family-wise counts and is shown only for
sensitivity.
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Figure 6.7 DBM vs. DTI sensitivity to catch-up and residual gaps (with 95% CIs). Panels
summarize detection and effect-size magnitude under the same multiple-comparison control
as the heatmaps. (a) Bars show the proportion of FDR-significant ROI–metric pairs within
family (DBM or DTI) for the two contrasts: Catch-up (PT-34W → PT-TEA) and Residual
at TEA (PT-TEA vs. TC-40W). Numbers above bars indicate significant/total pairs and
the percentage. Error bars are 95% CIs from ROI-cluster bootstrap (2,000 resamples). (b)
Bars show the median absolute Hedges’ g across ROI–metric pairs with 95% bootstrap CIs;
catch-up uses gav for PT-TEA-PT-34W, TEA residual uses g for TC-40W versus PT-TEA.
BH–FDR is applied within each diffusion family across all ROIs × metrics (8 lobar + 6
subcortical/midline); longitudinal models use mixed-effects without PMA due to collinearity
with timepoint.

Supplementary per-system analyses (Fig. 6.8) confirmed that the proportions of signif-
icant ROI-metric are highest in the midline and subcortical GM, and lowest in the Lobar
GM for both the DTI and DBM analysis; In TEA, the proportions of significant residual
ROI-metrics are higher in lobar tissues than in other regions, especially for DTI analysis.

This support DBM has advantages catch-up sensitive, while DTI remains more sensitive to
tissue-specific microstructural lag in TEA.

Per-metric counts (Fig. 6.9) show that DBM sensitivity is mainly carried out by diffusion-
spectrum quartiles (notably D25 and D50), while DTI sensitivity is dominated by diffusivities
(RD and MD).

These results support a complementary pattern: DBM tracks the rapid diffusion positional
change (D25, D50) and geneal scalar (MDDBM) in the diffusion spectrum for both catch-up
and TEA residuals, while DTI tracks changes more depends on AD RD and MD for catch-up,
and RD and MD for TEA residual.
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Figure 6.8 Per-system sensitivity (DBM versus DTI): catch-up and TEA residuals. (a–d)
System-level sensitivity under matched BH–FDR control across ROI×metric cells. Top row
for catch-up (PT-34W→PT-TEA): (a) proportion of significant cells (q < 0.05) by system; (b)
median absolute effect size |g| among significant cells. Bottom row for TEA residual (PT-TEA
vs. TC-40W): (c) proportion significant; (d) median |g| among significant. Color mapping:
blue = DBM, orange = DTI. Error bars are ROI-cluster bootstrap 95% CIs (resampling
ROIs within systems). Higher proportion indicates broader spatial detection; higher median
|g| indicates larger effect magnitudes among detected cells.

6.4 Discussion

This chapter provides the first comprehensive application of the Diffusion Bubble Model
to map microstructural maturation and catch-up in the preterm brain from 34 weeks to
term-equivalent age (TEA). By integrating volumetric and spectrally-resolved diffusion data,
our findings delineate a clear developmental principle: while global brain size normalizes by
TEA, widespread microstructural immaturity persists, best explained by a delayed onset of
maturation rather than a persistently altered rate, which supports our hypothesis.
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Figure 6.9 Per-metric contributions to sensitivity. Per-metric contributions to sensitivity
(DBM versus DTI; catch-up and TEA residuals). (a–d) Number of ROIs (out of 14) that
remain significant (q < 0.05, BH–FDR within family and within contrast) for each metric.
Top row: DBM metrics for (a) catch-up (PT-34W → PT-TEA) and (b) TEA residual (PT-
TEA vs. TC-40W). Bottom row: DTI metrics for (c) catch-up and (d) TEA residual. Bars
quantify how much each metric drives detection in its family/contrast: taller bars indicate
broader spatial significance across ROIs. Color mapping: blue = DBM, orange = DTI.
This view highlights that DBM quartile/spectrum metrics (e.g., D25/D50) carry much of the
catch-up signal, whereas DTI diffusivities (RD/MD) dominate the residual gap at TEA.

6.4.1 Volumetric catch-up masks underlying microstructural lag

Our volumetric analysis confirms significant brain growth across all regions from 34 to 40
weeks PMA, with a spatial gradient (parietal > frontal/temporal > occipital) in both GM
and WM (Fig. 6.3), consistent with late-gestation surges [66]. Critically, after adjusting for
intracranial volume, most regions did not show absolute volume differences in TEA. However,
proportional volumetric differences (e.g., smaller temporal GM and WM, larger frontal WM)
revealed persistent alterations in brain composition. This indicates that volumetric catch-up,
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while substantial, is not synonymous with normative maturation [63,64]. The co-occurrence
of this volumetric stabilization with a systematic decrease in the DBM fast fraction points to
a shared underlying process: the contraction of the extracellular space as the brain matures.

6.4.2 A delayed-onset, hierarchical model of microstructural maturation

After adjusting for head size and postmenstrual age, preterm–term diffusion trajectories were
broadly parallel yet consistently offset, supporting a timing-shift account in which the matu-
rational program is preserved but begins later after preterm birth [88, 187, 190]. The spatial
layout of this delay follows a well-described hierarchy. In cortical gray matter, DBM revealed
a predominant leftward shift of the isotropic spectrum with a concurrent reduction of the
fast tail—patterns consistent with extracellular-space contraction and dendritic and synap-
tic maturation. Residual immaturity at TEA was most evident in temporal and parietal
cortices, whereas frontal cortex showed the smallest interval change, in line with a posterior-
to-anterior progression [190,191]. In white matter, catch-up was strongest: fast fraction and
MD declined steeply, aligning with rapid late-gestation myelination. Nonetheless, frontal
WM retained the most pronounced fast-end elevation at TEA, underscoring its protracted
timetable and heightened vulnerability relative to posterior bundles [4,190]. Deep gray mat-
ter matured asymmetrically: the thalamus—hub of early sensorimotor circuits—approached
normalization (low DBM fast fraction; normalized FA and MD), whereas the hippocam-
pus–amygdala complex retained the largest residuals, consistent with limbic susceptibility in
prematurity [186,187]. Across midline structures, a posterior-to-anterior sequence was again
apparent. The cerebellum showed substantial catch-up with only a small residual gap by TEA
in our cohort, while the corpus callosum—particularly posterior segments—displayed persis-
tent immaturity. Notably, the brainstem looked normalized on DTI, yet DBM still detected
fast-end elevation, suggesting subtle extracellular-space differences that tensor averages can
miss [210,211].

Taken together, earlier-maturing projection systems (e.g., thalamus) exhibit smaller residuals
than later-maturing association systems (e.g., frontal WM, callosum), a pattern that coheres
with established models of developmental vulnerability and is captured with high fidelity by
DBM’s spectral readouts [88, 187,190].

6.4.3 DBM provides superior sensitivity to maturational processes

A central contribution of this work is showing how DBM complements, and in key scenarios
surpasses, conventional DTI for characterizing maturation. By reconstructing the isotropic
diffusivity spectrum, DBM localizes where changes occur along the diffusivity axis, providing
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biologically specific signatures of processes such as extracellular-water reduction and mem-
brane proliferation that underlie scalar shifts in MD and FA. This added specificity translated
into practical gains: DBM detected lingering fast-end elevations in regions (e.g., brainstem)
that appeared normalized on DTI and offered greater statistical power to separate groups at
TEA, especially in frontal and temporal pathways. In short, moving from scalar summaries
to spectral localization revealed maturational dynamics—both regional and temporal—that
would otherwise remain obscured by tensor averages [4, 190,210].

6.4.4 Limitations and future directions

This study has several limitations. First, relying on a coarse four-lobar parcellation constrains
anatomical specificity and may miss vulnerabilities within substructures (such as thalamic
nuclei or callosal subsegments) or across cortical layers. Although our diffusion-only deep-
learning pipeline already yields high-quality multi-label segmentations, the present analysis
does not fully exploit that granularity. Second, the 34–40 week PMA window, combined with
a two-time-point, cross-group design, effectively privileges linear approximations of matura-
tion. Prior work indicates that diffusion metrics—including DTI-derived FA—often follow
nonlinear age trajectories in late gestation, so linear models may oversimplify true develop-
mental dynamics. Third, sampling is sparse: preterm infants were scanned at only two time
points and term controls at a single time point, leaving rate estimates vulnerable to noise
and outliers and limiting inference about inter-individual variability. In addition, we lack
longitudinal neurodevelopmental outcomes, preventing direct tests of whether DBM-based
maturational signatures predict later cognitive or motor performance. Finally, potential sex-
related differences could not be evaluated because the cohort was imbalanced.

In future, thus, several steps would strengthen both inference and clinical relevance. Firstly,
we will adopt finer, anatomy-informed parcellations (e.g., Draw-EM–style high-granularity
segmentation), and cortical-depth profiling, so that region- and layer-specific trajectories can
be quantified with greater precision. Secondly, we will use flexible modeling of nonlinear
growth or Bayesian hierarchical approaches that capture subject-specific change. Third, we
will expand the sampling window earlier than 34 weeks and beyond TEA and move the
study to truly longitudinal designs. In addition, sex-balanced data will be acquired to avoid
potential bias. Finally, long-term neuro-development outcomes will be evaluated.
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6.5 Conclusion

In conclusion, this study maps late-gestation brain maturation in preterm infants (34 weeks
to term-equivalent age) and answers our core questions. Although volumes largely “catch
up” by TEA, microstructure lags behind: DBM and DTI reveal persistent differences that
volumetry alone cannot. This lag follows an ordered, posterior-to-anterior hierarchy and is
best explained by a timing shift (a delayed onset of maturation in preterm infants) rather
than a fundamentally different growth rate.

The Diffusion Bubble Model was central to these insights. By localizing changes along the
diffusion spectrum (e.g., fast-tail retreat and peak shifts consistent with extracellular-space
reduction), DBM complements conventional DTI and provides a more biologically specific
account of maturation. Moving beyond scalar averages to spectral signatures, we establish
DBM as a practical, sensitive tool for developmental neuroscience. With this framework
validated in typical maturation, next chapter applies it to a specific problem of neonatal brain
injury, where spectral phenotyping may further clarify mechanisms and improve stratification.
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CHAPTER 7 RESULT 4: DBM FRAMEWORK APPLICATION II:
MICROSTRUCTURAL CHARACTERIZATION AND SUBTYPING OF

NEONATAL PUNCTATE WHITE MATTER LESIONS

7.1 Introduction

Punctate white matter lesions (PWML) are a frequent form of neonatal brain injury, par-
ticularly in infants born preterm [6]. Although a substantial proportion of affected infants
show apparent resolution on follow-up imaging [119], PWML are linked to later motor [6,7],
cognitive [212, 213], and behavioral difficulties [213, 214]. Precise phenotyping is therefore
clinically important, because different lesion patterns likely reflect distinct pathologies and
risk profiles [5,6,117,137]. However, most existing classifications emphasize macroscopic fea-
tures, location, burden, and gross geometry (e.g., punctate, clustered, linear), with relatively
little attention to quantitative microstructural characterization.

Magnetic resonance imaging (MRI) is central to neonatal neuroimaging [9–11]. PWML typ-
ically appear as focal hyperintensities on T1-weighted (T1w) images and iso- to hypointense
foci on T2-weighted (T2w) images [5, 116, 118–122]. Susceptibility-weighted imaging (SWI)
can further distinguish ischemic from non-ischemic subtypes in some cases. Diffusion MRI
(dMRI) adds sensitivity to microstructural injury; prior studies have reported restricted dif-
fusion associated with PWML, sometimes with spatial extents that differ from the T1w foot-
print, suggesting lesion stage or subtype heterogeneity [5]. Yet, conventional models such
as diffusion tensor imaging (DTI) mainly summarize the overall diffusion magnitude and
anisotropy, providing limited insight into which diffusivity components are altered within the
tissue.

To address this gap, we recently introduced the Diffusion Bubble Model (DBM), which
decomposes diffusion-weighted signals into a set of isotropic diffusivity components with as-
sociated weights. By analyzing how the spectrum and its weights shift, DBM localizes where
along the diffusivity axis microstructural changes occur, offering a more granular readout
than aggregate DTI metrics and potentially improving sensitivity to subtle injury.

In this study, we focus on PWML that affects optical radiation (OR), a clinically relevant
pathway sensitive to myelination, and apply DBM to characterize the microstructure of the
lesion. We test whether the diffusion bubble model enhances the detection of PWML-related
microstructural alterations in neonatal optic radiation. We hypothesize that PWML in the
neonatal OR shift the isotropic diffusivity spectrum toward lower values and that DBM
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outperforms DTI in detecting such changes. We also assess subtype-specific profiles (wet,
dry), expecting a common leftward shift with differences in distributional characteristics.

7.2 Method

7.2.1 Participants

We used the second dataset release of the Developing Human Connectome Project (dHCP),
acquired at King’s College London with UK Health Research Authority approval [103, 162].
We searched the dHCP cohort for neonates with punctate white matter lesions. Candidate le-
sions had to appear as focal T1-weighted hyperintensities with corresponding T2-weighted iso-
to hypointensities. Four trained raters independently screened all candidates while blinded
to diffusion maps; disagreements were resolved by consensus, and a neonatal neurology re-
searcher verified the final set.

To minimize etiological heterogeneity, we retained 20 infants whose PWML were confined to
a unilateral optic radiation region. Each infant was paired 1 : 1 with a dHCP control in sex,
gestational age at birth, postmenstrual age at scan and birth weight. This yielded a three-arm
comparison: (i) Lesion group: Twenty infants with a single PWML in optic radiation (mean
gestational age at scan 37.82±3.00 weeks; mean gestational age at birth 35.57±3.76 weeks).
(ii) Contralateral group: In each infant with PWML, the mirror region in the contralateral
hemisphere was analyzed to provide a reference within the subject. (iii) Control group:
Twenty dHCP infants matched one-to-one for sex, birth-weight, gestational age at birth, and
age at scan (mean GA 37.97± 2.84 weeks; mean GA at birth 35.79± 3.75 weeks).

7.2.2 MRI acquisition

All infants underwent structural (T2w-weighted) and diffusion MRI on a 3T Philips Achieva
system. The resolution of the T2w images was 0.5 × 0.5 × 0.5 mm3 with a repetition time
of 12000 ms and an echo time of 156 ms [162]. The diffusion MRI data included 20 b0
images and three diffusion weighting shells (40 b = 400 s/mm2, 88 b = 1000 s/mm2, and
128 b = 2600 s/mm2), with a spatial resolution of 1.172 × 1.172 × 1.5 mm3, TR / TE of
3800 / 90 ms [103].

7.2.3 Data processing

For each infant, T1w and T2w were rigidly aligned with each other and then registered to
diffusion b0 image (target space for all analyzes) with a linear then non-nonlinear strat-
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Figure 7.1 Conceptual DBM Isotropic Diffusion Spectrum Curves. These illustrative DBM-
derived curves compare isotropic diffusion spectrum for tissues affected by punctate white
matter lesions (PWMLs, dashed red) and healthy control tissues (Controls, gray). The
x-axis represents isotropic bubble diameters (diffusion levels), and y-axis shows isotropic
decomposition coefficients. This paper hypothesized curve shifts happened in the PWMLs
compared to controls, because of restricted diffusion in PWMLs. Figure was from our prior
open-access article with author permission [24].

egy [215, 216]. dHCP diffusion data were used as released (denoising, motion and eddy
correction with outlier replacement, susceptibility correction) [103].

For the region of interest (ROI), the raters manually delineated the PWML boundary on T1w
(hyperintense core), cross-validated against T2w and color-FA to confirm OR location. When
minor cross-modality discrepancies occurred, T1w defined the boundary. Then we created (i)
a contralateral ROI by placing in the anatomically equivalent position in the same neonatal
brain, and (ii) a matched control ROI by placing an anatomically homologous mask in the
OR of the paired control infant [24].

7.2.4 DBM, DTI, and FWE reconstruction

We fit three diffusion MRI models to the diffusion MRI data. Firstly, DBM was applied to
the diffusion data to obtain the isotropic diffusion spectrum and the DBM metrics, namely
MDDBM, D25, D50, D75, Ffast, Variance σ2

DBM, Skewness SkDBM [24]. Ffast is the sum of coeffi-
cients of the isotropic spectrum with diffusion level above 2.5 mm2/ms. For comparison, we
computed the DTI-derived metrics (AD, RD, MD and FA) using the weighted least square
DTI provided by DIPY [179, 180]. Furthermore, fast diffusion water volume fraction maps
were generated by applying the free water elimination model to the same dMRI dataset,
providing further insight into the microstructure of tissue beyond the standard DTI mea-
sures [181].
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7.2.5 Experiment design and statistics

We evaluated PWML-related microstructural alterations in the optic radiation (OR) using
a paired three-arm design (Lesion versus Contralateral; Lesion versus Matched control) and
conducted analyses in three datasets: wet, dry, and all lesions (wet+dry). The lesions were
first classified as wet or dry based on the fast water fraction of DBM (Ffast) measured in
the ROI of the lesion relative to the OR of the paired control.

Our primary hypothesis is that PWML induces a leftward shift of the isotropic diffusivity
spectrum within the OR relative to the contralateral and matched control OR (Fig. 7.1).
Operationally, a shift to the left is defined as the lower DBM-derived diffusivity landmarks in
lesions, that is, the mean diffusivity of the spectrum (MDDBM) and the quartile diffusivities
(D25, D50, D75). Analyses were performed separately within the wet, dry, and wet+dry
(combined) datasets. For each scalar outcome, we screened normality and used two-sided
paired t-tests (p < 0.05) when assumptions were met, otherwise Wilcoxon signed-rank tests
(p < 0.05) for the two contrasts (Lesion versus Contralateral; Lesion versus Matched-control).

To contextualize the findings of DBM, we also analyzed conventional DTI metrics (AD, RD,
MD and FA) and structural MRI signal intensity (T1w, T2w) within the same ROIs and
paired contrasts using the same statistical procedures. We then evaluated the added value
of DBM in identifying and characterizing PWML-related tissue alterations by comparing the
direction and percentage changes of effects across modalities.

7.3 Results

7.3.1 Results of inter-rater reliability of PWML lesion masks

Table 7.1 Pair-wise inter-rater similarity for PWML lesion masks. Each entry shows Cohen’s
κ, its 95 % confidence interval (CI), the Dice coefficient, and raw agreement. Values are
rounded to three decimals, except raw agreement, which is shown to one decimal place.

Rater pair κ 95 % CI Dice Raw agreement

Rater1–Rater2 0.912 (0.908–0.915) 0.912 100.0 %
Rater1–Rater3 0.884 (0.880–0.888) 0.884 99.9 %
Rater1–Rater4 0.887 (0.883–0.891) 0.888 99.9 %
Rater2–Rater3 0.884 (0.880–0.888) 0.885 99.9 %
Rater2–Rater4 0.889 (0.885–0.893) 0.889 99.9 %
Rater3–Rater4 0.848 (0.843–0.852) 0.848 99.9 %
Fleiss (4 raters) 0.884 (0.881–0.887) — 99.9 %
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For interrater reliability (Table 7.1), pairwise Cohen’s values k in pairs ranged from 0.848
to 0.912, with 95% CI uniformly narrow (≤ 0.01 wide). Each pair of labels achieved almost
perfect agreement (k ≥ 0.81). The excellent Dice score (0.848–0.912) mirrored it, indicating
a substantial spatial overlap of the binary lesion masks. Furthermore, overall Fleiss’s k

was 0.884 (95% CI 0.881–0.887), confirming excellent concordance across the four raters
simultaneously.

7.3.2 DBM-based sub-typing of neonatal PWMLs

Data-driven identification of “wet” and “dry” lesions

When DBM was applied to all optic radiation PWMLs, the fast diffusion fraction (Ffast),
displayed a clear bimodal distribution. Using the values in the contralateral and control
regions as a threshold, the lesions were divided into two equally sized groups (10 infants
each):

(1) Wet-Type PWMLs: Ffast is significantly higher than the mirror region (contralateral) and
the matched controls, indicating excess free water.

(2) Dry-Type PWMLs Ffast is indistinguishable from reference tissue, suggesting a denser
and less edematous microenvironment.

Figure 7.2 (a) plots Ffast against gestational age at scan. Wet lesions (pink circles) lie con-
sistently above dry lesions (red circles), and both reference groups (orange triangles, gray
squares). All groups show the expected decline in maturation Ffast with age, consistent with
normal maturation of the neonatal brain and a gradual reduction in free water content [217].

A secondary analysis revealed that wet-type infants were imaged earlier after birth (median
5.50 days) than dry-type infants (median 14.00 days; Mann-Whitney one-sided U = 26.0,
p = 0.0376; Figure 7.2 (b)). The gestational age at the scan did not differ (p = 0.82),
confirming that the differences between subtypes are not explained by the general maturity
of the brain.

Characteristic imaging signatures

Wet-type PWML example Figure 7.3 and Fig. B.1 illustrate a wet-type PWML in a neonate
scanned at 35.00 weeks (GA at birth 34.14 weeks). On conventional MRI the lesion is hyperin-
tense on T1-weighted images (Fig. 7.3 (a)), hypointense on T2-weighted images (Fig. B.1 (a)).
The diffusion tensor imaging results demonstrated restricted diffusion within the lesion, with
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Figure 7.2 Subtype-specific trajectories of fast-diffusion metrics and postnatal age at MRI
in PWML. (a) Averaged fast-diffusion coefficient in ROI plotted against scanning age for
four regions: wet-type PWML (pink circles), dry-type PWML (red circles), contralateral
OR (orange triangles), and matched-control OR (gray squares). Separate trend lines were
fitted to visualize subtype- and region-specific age relationships. (b) Postnatal age at MRI by
subtype. Box-and-whisker plots summarize wet-type (pink) and dry-type (red) PWML; the
center line marks the median, the open triangle marks the mean, boxes span the interquartile
range, and whiskers extend to 1.5× the inter-quartile range. A one-sided Mann–Whitney test
(wet < dry) indicated lower postnatal age for wet lesions (U = 26.0, p = 0.0376). Figure was
adapted from our prior open-access article with minor edits and is reused here with author
permission [24].

reductions in both axial and radial diffusivity maps (Figs. B.1 (b) and (c)). These findings
were consistent with classical imaging descriptions of PWML in the literature [5, 119,122].

DBM analysis adds microstructural details:

(1) Isotropic spectrum: The curve is uniformly left-shifted and markedly broadened, with a
pronounced fast-diffusion tail (Fig. 7.3 (g)). This pattern indicates abundant extracellu-
lar water consistent with vasogenic oedema.

(2) Quartile diffusivity maps: Due to the spectrum shift, the lesion appears as a characteristic
“black hole” across all three area-specific (D25, D50, D75) diffusion maps (Fig. 7.3 (d)-(f)).

(3) Fast-water fraction: An elevated fast-diffusion fraction makes the lesion stand out as
bright foci on the water-fraction map (Fig. 7.3 (c)).
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(4) DBM mean diffusivity (MDDBM): The lesion remains restricted on the model-specific
MD map (Fig. 7.3 (b)).

(5) Spectrum spread and shape: The deviation (width) map shows a prominent bright spot,
while skewness is substantially increased within the lesion (Appendix Fig. B.1 (d) and
(e)), both reflecting the broadened asymmetric spectrum.

Together, these findings support the wet-type phenotype: acute tissue disruption accompa-
nied by vasogenic oedema and excess free water.

Dry-type PWML example Figure 7.4 and Fig. B.2 display a representative dry-type punc-
tate white matter lesion located in the optic radiation of an infant scanned at 39.43 weeks
gestational age (born at 39.29 weeks GA). On conventional MRI, the lesion is hyper-intense
on T1-weighted image (Figure 7.4 (a)), hypo-intense on T2-weighted image (Figure B.2 (a)),
and displays mild restriction on both axial and radial diffusivity maps (Figure B.2 (b) and
(c)), characteristics it shares with wet-type PWMLs. However, DBM analysis highlights a
distinct microstructural pattern:

(1) Isotropic spectrum: The lesion’s spectrum is uniformly shifted toward a lower diffusivity
and is slightly broader than that of the contralateral optic radiation, with the main
difference confined to the beginning of slow diffusion (Fig. 7.4 (g)). This indicates a
persistent microstructural change with little extracellular (fast) water.

(2) Quartile diffusivity maps: The lesion appears only slightly darker than the surrounding
tissue on all three maps (Fig. 7.4 (d)-(f)), reflecting the modest spectrum shift.

(3) Fast-water fraction: There is no appreciable fast-diffusion tail, confirming minimal free-
water accumulation (Fig. 7.4 (c)).

(4) DBM mean diffusivity (MDDBM): The slight diffusion restriction is still evident (Fig. 7.4
(b)), but the contrast is less striking than in the wet-type example.

(5) Spectrum shape: The deviation (width) and skewness maps show only subtle changes
(Appendix Fig. B.2 (d) and (e)), consistent with a slightly broadened, asymmetric spec-
trum.

These findings point to ongoing cellular reorganization or a chronic structural change after
resolution of acute vasogenic oedema. In line with this interpretation, infants with dry-type
lesions are typically scanned later than those with wet-type lesions (Fig. 7.2 (b)), suggesting
that the dry phenotype represents a more later stage in the lesion-evolution continuum.
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Figure 7.3 Wet-type punctate white-matter lesion in the optic radiation visualized with DBM.
Subject ses-44704 from the dHCP cohort. (a) Axial T1-weighted image shows a focal hyper-
intense PWML (red arrow). (b) DBM-derived mean-diffusivity map (MDDBM) confirms
markedly redstricted diffusion at the same locus. (c) Fast-diffusion (free-water) fraction
map reveals an elevated extracellular-water component, a hallmark of the “wet” phenotype.
(d–f) Isotropic-spectrum area maps at the first, second and third quartiles (D25, D50, D70
area diffusion) illustrate the progressive signal inversion that accompanies increasing diffusion
scales. Orange arrows mark the mirror (contralateral) region used for within-subject com-
parison; the matched control ROI is not displayed. (g) Isotropic decomposition coefficient
curves for lesion (red), contralateral (orange) and control (grey) ROIs: the lesion spectrum is
broadened, left-shifted and exhibits an exaggerated high-diffusion tail, consistent with oede-
matous tissue rich in free water.

7.3.3 Group spectrum analysis of lesion, contralateral, and control regions

When we averaged the isotropic spectra within each dataset (combined type: wet + dry, wet
type and dry type, Fig. 7.5), the group patterns recapitulated the single subject examples
shown previously (Fig. 7.3 and Fig. 7.4). In all three datasets, lesion spectra were left-shifted
relative to contralateral and matched control OR, with a greater spectral weight at lower
diffusivities (i.e. slower diffusion components). Contralateral spectra closely followed their
corresponding controls, showing only a slight leftward displacement at the D25 landmark.
The control spectra overlapped between the data sets without visible differences. Notably,
the wet subtype exhibited the most pronounced high-diffusivity tail, the combined-type group
was intermediate, and the dry subtype showed the smallest tail.
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Figure 7.4 Dry-type punctate white-matter lesion in the optic radiation characterized with
DBM. Subject ses-38001 from the dHCP cohort. (a) Axial T1-weighted image displays a focal
hyper-intense PWML (red arrow). (b) DBM-derived mean-diffusivity map (MDDBM) shows
only mild diffusion restriction. (c) Fast-diffusion fraction map reveals no appreciable increase
in free-water content, a defining feature of the “dry” phenotype. (d–f) Isotropic-spectrum
area maps at the first, second, and third quartiles (D25, D50, D75 map) illustrate how the
lesion signal diminishes with increasing diffusion scale, without developing the high-diffusion
inversion seen in wet-type lesions. Orange arrows mark the contralateral mirror ROI; the
matched control ROI is not displayed. (g) Isotropic decomposition coefficient curves for lesion
(red), contralateral (orange), and control (gray) regions confirm a modest leftward shift and
a narrower spectrum with no high-diffusion tail—consistent with a compact, gliotic micro-
environment lacking excess extracellular water.

7.3.4 DBM analysis of three group of PWMLs

Combined Group Consistent with the spectra in Fig. 7.5 (a), the box plots in Fig. 7.6
(a) and Fig. 7.7 (a) confirmed a systematic leftward displacement of the lesion spectrum
relative to both contralateral and control OR, indicating a higher proportion of slow-diffusing
components within lesions. Specifically:

• D25 (1/4 area diffusivity) was lower in lesions by 29.1% versus controls (p < 0.001,
1.24 µm2/ ms to 0.83 µm2/ ms) and by 25.1% vs. contralateral (p < 0.001, 1.14 µm2/ ms
to 0.83 µm2/ ms).

• D50 (1/2 area diffusivity) was lower in lesions by 21.5% versus controls (p < 0.001,
1.66 µm2/ ms to 1.55 µm2/ ms) and by 19.2% versus contralateral (p < 0.001, 1.14 µm2/ ms
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Figure 7.5 Averaged Isotropic Decomposition Coefficient Curves for Lesion, Contralateral,
and Control Regions in the Optic Radiation. This figure presents the averaged isotropic
decomposition coefficient curves within the optic radiation for: (a) subjects with both wet
and dry type punctate white matter lesions (PWMLs) (N = 20); (b) subjects with only
Wet-type PWMLs (N = 10); (c) subjects with only Dry-type PWMLs (N = 10). Lesion
regions: red solid curve; Contralateral regions: orange dashed curve, from the same subjects
as the lesion regions; Control Regions: gray dashed curve, from 20 paired healthy controls.
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Figure 7.6 DBM diffusion postional metrics in the optic radiation across lesion (red), con-
tralateral (orange), and control regions (gray). Bar plots of D25 (1/4 area diffusivity, D50
(1/2 area diffusivity, D75 (3/4 area diffusivity, and domain diffusivity in the optic radiation
for (a) all subjects with punctate white matter lesions (PWMLs) (N = 20), (b) subjects with
only wet PWMLs (N = 10), and (c) subjects with dry PWMLs (N = 10). Pairwise contrasts
were lesion versus contralateral and lesion versus matched control. Statistically significant
differences are marked as * (p < 0.05), ** (p < 0.01), and *** (p < 0.001); percentage
differences are annotated above significant bars.
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Figure 7.7 General DBM metrics in the optic radiation across lesion (red), contralateral
(orange), and control regions (gray). Bar plots of MD, Variance, Skewness, and Fast wa-
ter fraction in the optic radiation for (a) all subjects with punctate white matter lesions
(PWMLs) (N = 20), (b) subjects with only wet PWMLs (N = 10), and (c) subjects with
dry PWMLs (N = 10). Pairwise contrasts were lesion versus contralateral and lesion ver-
sus matched control. Statistically significant differences are marked as * (p < 0.05), **
(p < 0.01), and *** (p < 0.001); percentage differences are annotated above significant bars.

to 1.35 µm2/ ms).

• D75 (3/4 area diffusivity) was lower in lesions by < 10% versus both controls and
contralateral.

• The domain diffusivity exhibited a shift to the left of 32.2% versus controls (p < 0.001)
and of 28.8% versus contralateral (p < 0.001).

Wet lesions accentuated the group-level pattern (Fig. 7.5 (b), Fig. 7.6 (b) and Fig. 7.7 (b)):

• D25 (1/4 area diffusivity) was lower by 38.8% vs. controls (p < 0.001, 1.24 µm2/ ms to
0.73 µm2/ ms) and 35.1% vs. contralateral (p < 0.001, 1.14 µm2/ ms to 0.73 µm2/ ms).

• D50 (1/2 area diffusivity) was lower by 28.6% vs. controls (p < 0.001, 1.66 µm2/ ms to
1.14 µm2/ ms) and 26.3% vs. contralateral (p < 0.001, 1.55 µm2/ ms to 1.14 µm2/ ms).

• D75 (3/4 area) did not show a significant change.

• Domain diffusivity ddomain shifted left by 40.4% and 36.4% vs. controls (p < 0.001) and
contralateral (p < 0.001).

• Fast water fraction, comparing to the control group, increased more than 160% (p <

0.05), and the spectral variance and skewness increased dramatically (41.0%, p < 0.01
and 417.8%, p < 0.001), consistent with vasogenic oedema.
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Dry lesions displayed a milder, more evenly distributed shift (Fig. 7.5 (c), Fig. 7.6 (c) and
Fig. 7.7 (c)):

• D25 (1/4 area diffusivity) was lower by 19.4% vs. controls (p < 0.01) and 15.2% vs.
contralateral (p < 0.01).

• D50 (1/2 area diffusivity) was lower by 14.4% vs. controls (p < 0.01) and 12.1% vs.
contralateral (p < 0.01).

• D75 (3/4 area diffusivity) shifted left by 11.1% and 10.8% vs. controls (p < 0.01) and
contralateral (p < 0.05).

• Domain diffusivity shifted left by 24.0% and 21.4% vs. controls (p < 0.05) and con-
tralateral (p < 0.05).

• Fast water fraction decreased (68.8%, p < 0.05), and the variance did not show signifi-
cant changes.

Thus, wet lesions showed the greatest left shift, broadening, and skewness with a large excess
of fast water, while dry lesions retained a left shift without a rapid-water augmentation,
together delineating subtype-specific microstructural phenotypes.

7.3.5 Conventional MRI findings in lesion, contralateral, and control regions

Diffusion tensor imaging metrics

Combined group: Lesions showed a uniform reduction in diffusivity relative to both references
(Figure 7.8 (a)). AD decreased by ≈ 28% versus controls and by ≈ 26% versus contralateral
OR; RD and MD drop by a comparable 25–27%. FA decreased only modestly (13.4%),
reflecting the preserved but compressed fiber organization.

Wet-Type PWMLs: The attenuation was more pronounced (Fig. 7.8 (b)): AD was lower by
≈ 32% compared to both control and contralateral tissue, RD by ≈ 29% and MD by ≈ 30%.
FA decreased by 15–17%. The magnitude and pattern of the reductions were compatible
with acute injury accompanied by increased extracellular water, although the DTI itself does
not specify a mechanism.

Dry-Type PWMLs: The changes were smaller, but they remained significant (Fig. 7.8 (c)).
AD decreased by ≈ 25% vs. controls and ≈ 19% vs. contralateral tissue; RD and MD fell by
roughly 22–24%. FA showed no significant differences.

Structural-MRI signal intensities
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(c) Dry-Type PWMLs

Figure 7.8 DTI metrics in the optic radiation across lesion (red), contralateral (orange), and
control regions (gray). Bar plots of AD, RD, MD, and FA in the optic radiation for (a)
all subjects with punctate white matter lesions (PWMLs) (N = 20), (b) subjects with only
wet PWMLs (N = 10), and (c) subjects with dry PWMLs (N = 10). Pairwise contrasts
were lesion versus contralateral and lesion versus matched control. Statistically significant
differences are marked as * (p < 0.05), ** (p < 0.01), and *** (p < 0.001); percentage
differences are annotated above significant bars.

Across all lesion subgroups (Fig. 7.9), T1-weighted signal was > 30% higher than the con-
tralateral side and > 40% higher than the control white matter, with wet lesions showing the
highest elevation. T2-weighted signal was uniformly lower, decreasing by 11% to 13%, with
a slightly greater reduction in dry lesions.

7.4 Discussion

This study applied the Diffusion Bubble Model to investigate the microstructural under-
pinnings of punctate white matter lesions. Our findings strongly support the hypothesis
that DBM provides superior sensitivity and specificity compared to conventional metrics, re-
vealing a consistent leftward shift in the isotropic diffusivity spectrum within PWMLs. Cru-
cially, DBM resolved this population into two distinct subtypes, edema-dominant (“wet”) and
reorganization-dominant (“dry”), providing a mechanistic explanation for the heterogeneity
of the lesion that is invisible to structural magnetic resonance imaging and DTI.

7.4.1 Resolving microstructural heterogeneity in PWMLs

Conventional imaging presented a uniform picture of PWMLs. Both subtypes showed similar,
significant reductions in contralateral-normalized T2w signal (wet: −11.3%, dry: −12.5%)
and mean diffusivity (20% to 30%). It was the decomposition of the diffusivity signal by
DBM that uncovered the profound mechanistic divergence between them.



111

T1w T2w
0

5

10

15

20

25

30

35

40

Si
gn

al
in

te
ns

it
y ***

32.3%
***

42.5%

***
-11.9%

***
-11.9%

Lesion
Contralateral
Control

(a) Combined-Type PWMLs
T1w T2w

0

5

10

15

20

25

30

35

40

Si
gn

al
in

te
ns

it
y ***

35.8%
***

44.1%

**
-11.3%

*
-11.7%

Lesion
Contralateral
Control

(b) Wet-Type PWMLs
T1w T2w

0

5

10

15

20

25

30

35

40

Si
gn

al
in

te
ns

it
y ***

29.3%
***

41.0%

***
-12.5%

**
-12.1%

Lesion
Contralateral
Control

(c) Dry-Type PWMLs

Figure 7.9 Structural MRI signal intensity in the optic radiation across lesion (red), con-
tralateral (orange), and control regions (gray). Bar plots of T1-weighted and T2-weighted
signal intensity in the optic radiation for (a) all subjects with punctate white matter le-
sions (PWMLs) (N = 20), (b) subjects with only wet PWMLs (N = 10), and (c) subjects
with dry PWMLs (N = 10). Pairwise contrasts were lesion versus contralateral and lesion
versus matched control. Statistically significant differences are marked as * (p < 0.05), **
(p < 0.01), and *** (p < 0.001); percentage differences are annotated above significant bars.

Wet-type PWML Lesions classified as “wet” were characterized by a dramatic inflation
of the fast-diffusing water fraction (+160%, p < 0.05) and a markedly higher spectral skew-
ness (+418%, p < 0.001). On quartile diffusivity maps, these lesions presented a focal hy-
pointense core (Fig. 7.3), indicating a local displacement of the entire spectrum. This pattern
is highly consistent with vasogenic edema, where water redistributes into more freely diffus-
ing extracellular pools. The concurrent changes at the slow-diffusion end may further reflect
compartmental changes linked to inflammatory or cellular responses [25,27,50,127,183].

Dry-type PWML In contrast, “dry” lesions exhibited a predominant leftward shift of
the isotropic spectrum with a significantly reduced fast fraction (−68.8%, p < 0.05) and no
discrete hypointense core on quantile maps (Fig. 7.4). This profile is compatible with later-
stage tissue reorganization processes, such as gliosis or elevated cellularity, which restrict
water mobility with minimal free water contribution. The finding that infants with dry-type
lesions were scanned at a later postnatal age (Fig. 7.2 (b)) supports a temporal progression
from an acute, edematous phase to a chronic and reparative one.

In our data, the contrast of T1w tended to be more conspicuous in wet lesions than in
dry lesions, while the reductions of T2w were similar between subtypes (see Fig. 7.3, 7.4),
highlighting the complementary sensitivities of structural MRI and DBM.
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7.4.2 Validation and clinical translation

Convergent Validity with Established Models The biological interpretation of the
DBM subtypes is reinforced by a strong convergent validity with standard free water elimina-
tion. An exploratory FWE analysis in the same cohort showed a higher free-water fraction in
wet lesions and no elevation in dry lesions, directly mirroring the DBM fast-fraction pattern.
Furthermore, DBM’s fast fraction was linearly associated with FWE’s free-water fraction in
both simulations and neonatal data (slope near unity, high R2; Fig. 4.5 (d)), indicating that
DBM provides a congruent but spectrally richer estimate of fast-diffusing water.

Towards a Microstructurally-Informed Clinical Pathway The ability to subtype
PWMLs at baseline opens a pragmatic path for personalized monitoring. We propose a
scheme where: (i) lesions are subtyped using DBM (fast-tail inflation/skewness for wet;
slow-end shift for dry); (ii) spectral normalization is tracked on follow-up (wet: fast-tail
decrease; dry: continued leftward shift or stabilization); and (iii) surveillance intervals are
tailored accordingly, with short-interval scans for edema-dominant lesions and longer-horizon
monitoring for reorganization-dominant ones. This DBM-based approach directly comple-
ments structural magnetic resonance imaging, which showed similar T2w reductions between
subtypes, by pinpointing where along the diffusivity axis pathological changes occur.

7.4.3 Limitations and future directions

Limitations Although we had four raters to carefully delineate the region of PWML, the
manual lesion delineation is potentially biased. Defining ROIs on T1w before transfer to
other modalities introduces sensitivity to residual distortions. Our analysis focused on the
cores of the lesion, leaving the perilesional gradients and the specific impacts of the tract
unquantified. The cross-sectional design also precludes direct observation of longitudinal
wet-to-dry transitions.

Future work Future work will focus on standardizing lesion masks using co-registered T2w
and MDDBM with multi-rater consensus, and on quantifying perilesional and along-tract
effects. Tracking the temporal evolution of lesions in a longitudinal cohort is a critical next
step in validating the proposed wet-to-dry transition. Finally, to ensure clinical translation,
we plan to package a NICU-ready pipeline, including quality-control protocols, harmonization
scripts, and pretrained models, for broader validation and use.
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7.5 Conclusion

In conclusion, this study demonstrates that the Diffusion Bubble Model moves beyond the
descriptive limitations of conventional MRI to provide a mechanistic phenotyping of punctate
white matter lesions. We have established that what appears as a homogeneous entity on
structural and tensor-based images in fact comprises two distinct microstructural pathways:
an acute, edema-dominant “wet” phenotype characterized by fast-water inflation and high
spectral skewness, and a more chronic, reorganization-dominant “dry” phenotype defined by
a predominant leftward spectral shift and reduced fast fraction.

The ability of DBM to resolve this heterogeneity fulfills a central promise of this thesis: to de-
liver a clinically feasible framework with superior sensitivity and specificity to neonatal brain
injury. By pinpointing where along the diffusivity axis pathological changes occur, DBM
offers a biologically-grounded explanation for PWML appearance and a principled basis for
subtyping. This work directly builds on the validated foundation of DBM (Chapter 4), cul-
minating in its successful application to a precise and common form of clinical injury, paving
the way for connecting early-life lesion characteristics with long-term neurodevelopmental
outcomes.
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CHAPTER 8 DISCUSSION

8.1 Overview of the Research Journey

Characterizing neonatal brain maturation and focal injury is challenging: the third trimester
features rapid, heterogeneous microstructural change, while conventional imaging often lacks
the biological specificity needed to disentangle tissue processes under clinically feasible ac-
quisition constraints. This thesis aimed to close that gap by developing and validating a
diffusion-MRI framework that is both biophysically interpretable and practical at the bed-
side, and then using it to address core questions in segmentation, developmental assessment,
and injury characterization in preterm and term-born infants.

We organized the work around a simple narrative: methodological innovation enabling bio-
logical insight and clinical utility (Fig. 1.4). First, we introduced and rigorously validated
the Diffusion Bubble Model (DBM) (Chapter 3 and Chapter 4)—a spectrum-based approach
that reconstructs the isotropic diffusivity spectrum to localize where changes occur along
the diffusivity axis—thereby adding interpretability beyond tensor averages. To ensure this
model’s applicability to large-scale, we then built a diffusion-only segmentation pipeline that
delivers precise tissue parcellation directly in dMRI space (Chapter 5).

Armed with this validated toolkit, we applied it to resolve fundamental questions in brain
development and injury. In development, we found that the preterm-term diffusion tra-
jectories between late-preterm and TEA are broadly parallel but time-shifted, indicating a
delayed onset of maturation with residual immaturity concentrated in frontal and temporal
pathways at term-equivalent age, despite volumetric catch-up (Chapter 6). In injury charac-
terization, we identified two mechanistically distinct subtypes within punctate white-matter
lesions (PWML) that are indistinguishable using conventional imaging (Chapter 7).

8.2 Main discussion

The work in this thesis can be read as defining and applying a new microstructural language
for the neonatal brain. The Diffusion Bubble Model (DBM) establishes the alphabet and
grammar of this language by decomposing complex diffusion signals into meaningful spectral
units. The diffusion-only segmentation tool ensures that this language can be read con-
sistently across heterogeneous datasets—even when structural images are missing—so that
spectral information is anchored in a stable anatomical frame. Deployed together, these com-
ponents allow us to interpret maturation and focal injury through a common, spectrum-based
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vocabulary rather than through a collection of sequence-specific readouts.

8.2.1 Positioning DBM within diffusion MRI modeling

Diffusion models are often grouped into three families: (i) statistical signal descriptions (e.g.,
DTI) that summarize the attenuated signal [14–16]; (ii) discrete multi-compartment models
that posit a small set of tissue pools with prescribed geometries [17, 25, 26, 29]; and (iii)
spectrum-based models that represent diffusion as a continuum over diffusivity or restriction
scales [13,23,24,27,28]. DBM belongs to the third family with an explicit but compact design:
it reconstructs the one-dimensional isotropic diffusivity spectrum and handles anisotropy via
a low-dimensional adjustment, thereby localizing where along the diffusivity axis changes
occur while minimizing orientation dependence [24].

Relation to two-compartment models

Conceptually, the Diffusion Bubble Model can be viewed as a natural extension of multi-
compartment modeling into a continuous domain. It preserves the intuitive notion of signal
“fractions” while relaxing the strong geometric and diffusivity assumptions that are often
unidentifiable in typical neonatal acquisitions.

In practice, DBM often behaves like a parsimonious two-term factorization of the diffusion
signal: (i) a low-dimensional anisotropy adjustment that captures orientation-dependent ef-
fects, and (ii) an isotropic residual that is explicitly decomposed into a continuous diffusivity
spectrum. This differs from classical two-compartment formulations that assign fixed com-
partments with predetermined diffusivity.

Free water elimination (FWE) model is a representative two-compartment approach: it mod-
els each voxel as an anisotropic tissue tensor plus a single fast isotropic pool intended to
capture free water or partial-volume CSF [181, 189]. DBM makes a complementary choice
in another direction. Rather than positing one fixed fast-isotropic compartment, DBM first
compresses anisotropy into a minimal adjustment using an explicit fixed long thin anisotropic
tensor and then models the entire isotropic residual as a nonparametric spectrum. As a re-
sult, the isotropic component in DBM is not solely identified with free water; it integrates all
isotropic contributions—including hindered and restricted components—and localizes them
along the diffusivity axis.

In essence, DBM does not seek to map anatomical compartments in a one-to-one manner.
Instead, it interprets the voxel’s isotropic signal as an aggregate spectral response, reflecting
the confluence of multiple microstructure processes within a single, continuous diffusivity
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profile. This design confers a critical advantage under neonatal imaging constraints—limited
b-value bandwidth, modest angular sampling, and short scan times. By circumventing the
need to enumerate multiple anisotropic tissue compartments, DBM significantly enhances
model identifiability while preserving the ability to resolve microstructure changes at the
spectral level [24].

Relation to existing spectrum-based models

Within spectrum-oriented dMRI, DBM occupies a pragmatic middle ground. Unlike DSI—
which reconstructs the full displacement or spectrum at the cost of dense q-space sampling,
high b-values, and long acquisitions—DBM recovers a compact one-dimensional isotropic
diffusivity spectrum from short, neonatal-feasible protocols. Although conceptually inspired
by DBSI and DSI, which fit multiple anisotropic fiber populations and/or restricted compo-
nents per voxel (assigning per-bundle (λ∥, λ⊥) and weights) [27], DBM avoids a per-bundle
orientation fitting and the growth of accompanying parameters that are sensitive to SNR and
initialization in short neonatal scans [23]. The trade-off is deliberate: DBM forgoes tract-level
parameters in exchange for stable, spectrum-aware readouts that localize change along the
diffusivity axis (e.g., quantile and dominant diffusivities) and summarize distribution shape
(e.g., fast fraction, variance, skewness), which proved sufficient to phenotype developmental
and lesion-related effects in this thesis.

DBM is also closely related to implicit-spectrum statistical models such as DKI and the
stretched-exponential and distributed diffusion coefficient (DDC) model [14, 15]. Those ap-
proaches assume an underlying distribution of diffusivity but summarize it via low-order
moments or two-parameter summaries in the signal domain (e.g., kurtosis as a variance
proxy; DDC and the heterogeneity index α). By contrast, DBM makes the distribution ex-
plicit: after a minimal anisotropy adjustment, it inverts the isotropic component to obtain
the full spectrum, from which moments can be computed to cross-check DKI and stretched-
exponential descriptors. In this way, DBM retains computational simplicity while exposing
the spectrum’s shape, yielding interpretable, visually inspectable features that were informa-
tive for neonatal development and injury characterization in our cohort.

Scope, strengths, and boundaries of DBM

DBM is a spectrum-first, geometry-light framework optimized for low-to-moderate anisotropy
typical of neonatal WM and GM. By reducing voxel-level anisotropy before isotropic decom-
position, it localizes changes along the isotropic diffusivity spectrum without fitting multiple
fiber populations, hence it is not designed for tractography. This design is advantageous
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in neonates, where lower FA, higher free-water content, motion, and EPI distortions chal-
lenge orientation-resolved methods [103,218]. In simulations at fixed MD (e.g., 1.5 µm2/ms),
very high FA (≥ 0.7) produced slight but noticeable shifts in the recovered isotropic spec-
trum due to coupling in the anisotropy adjustment step; increasing the axial diffusivity of
the adjustment tensor can mitigate this but at the cost of bias in low-FA voxels (Chap-
ter 4). We therefore prioritized stability in the neonatal range (most tissue FA ≤ 0.5 in our
cohort; Chapter 6), which aligns with our dMRI-25-direction neonatal acquisition. For inter-
operability, DBM can output tensor-like scalars (an anisotropy index with FA-like behavior,
DBM-derived MDDBM, and a domain diffusivity Dmain), but these are compatibility bridges,
not primary readouts. Recent work also shows shape stability of the recovered spectrum
across reasonable isotropic bases—basis choice mainly rescales coefficients without altering
qualitative features [24]. In sum, DBM complements rather than replaces orientation-resolved
models: it is more informative for tissue-structure–level inference in development and disease
(e.g., regional maturation and PWML characterization), and its boundaries are clearest in
high-FA regimes and tractography applications.

8.2.2 What DBM adds beyond tensors?

Added specificity over tensors: localization along the diffusivity axis The key advan-
tage of DBM is localization: it resolves where diffusion alterations occur along the isotropic
diffusivity spectrum rather than averaging them into a small number of averaged values.
From late preterm to TEA, neonatal brain diffusion trends are well established—MD de-
creases and FA increases with age as extracellular water contracts and early myelination pro-
gresses [10,184]. DBM clarifies these effects by separating the fast-diffusion (free-water–like)
tail content from the tissue-dominated peak. For example, the classic observation that WM
has higher MD than GM can be attributed primarily to a right-shift of the tissue peak in WM
rather than to a greater free-water fraction (Chapter 4). Across late preterm to 43 weeks,
DBM shows monotonic decreases in the fast-water fraction in cortical GM, WM, and deep
GM (GM > WM > deep GM at a given age; Chapter 6), consistent with extracellular-space
contraction rather than edema [185]. This aligns with spectrum and FWE-style approaches
that improve specificity by parsing high-diffusivity isotropic signal from hindered and re-
stricted components [219].

PWML illustration: similar tensors, distinct spectra In punctate white-matter lesions
(Chapter 7), tensor metrics and T2w signal changes can appear similar across lesions, yet
DBM separates edema-dominant (“wet”) from reorganization-dominant (“dry”) phenotypes
by revealing fast-tail inflation with increased skewness versus a left-shift with reduced fast
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fraction. Thus, DBM’s positional and shape metrics (e.g., diffusivity quantiles, skewness, fast
fraction) provide mechanistic specificity that complements tensors and structural intensity.
Structural MRI alone does not robustly distinguish these subtypes, whereas the spectral
readout indicates where in the distribution the change occurs.

Convergent validity with FWE DBM quantifies fast-diffusion content by integrating the
high-diffusivity tail of the isotropic spectrum rather than assigning a single “free-water” com-
partment. Across simulations and neonatal data (Chapter 4), DBM fast fraction is linearly
associated with FWE’s free-water fraction, indicating convergent—though not identical—
estimates while DBM retains a fuller spectral description. Because FWE imposes one fast-
isotropic pool, absolute magnitudes are not directly interchangeable; we therefore use FWE
as a consistency check rather than a ground truth.

Complementary sensitivity profiles Under matched multiple-comparison control, DBM
more often detected within-preterm catch-up effects (via positional metrics such as D25 and
D50), whereas DTI captured larger shares of TEA residuals (AD, RD and MD) (Chapter 6).
This reflects the models’ emphases: DBM localizes where along the spectrum maturation
proceeds; DTI summarizes how much diffusivity lag remains at TEA. Using both yields a
more complete picture.

8.2.3 Integrating development and injury within a unified spectral framework

DBM reveals a common “spectral grammar” that organizes both typical maturation and focal
injury within the same coordinate system. During late-gestation development, the delayed-
onset pattern observed in preterm infants can be interpreted as a progressive leftward shift of
the tissue-dominated peak accompanied by compression of the fast-diffusion tail, consistent
with extracellular-space reduction and increasing membrane density. Strikingly, the same
axes help decode punctate white-matter lesions (PWML): edema-dominant (“wet”) lesions
exhibit fast-tail inflation, an extreme expression of extracellular water increase that lies on
the same fast-diffusion end of the spectrum as normal developmental fluid changes, albeit
with different magnitude and spatial extent; reorganization-dominant (“dry”) lesions show a
left shift with reduced fast fraction, suggestive of tissue reorganization and restricted-space
dominance that diverges from, or “hijacks” the typical maturational trajectory.

Viewed this way, DBM does not provide two disconnected findings but a single, coherent
narrative: both maturation and injury manifest as spectral displacements and deformations
along the diffusivity axis. This perspective also clarifies why volumetry failed to capture
microstructural lag at term-equivalent age: volume is a macroscopic, integrated quantity,
whereas the DBM spectrum exposes uneven changes among underlying components, speci-
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fying where along the diffusivity spectrum those changes occur.

8.2.4 Clinical feasibility and the diffusion-native workflow

Our original motivation for a diffusion-only segmentation pipeline was pragmatic: to ana-
lyze infants with missing or unusable T2-weighted images. In practice, the model’s strong
cross-site generalization indicates that dMRI-derived scalars—despite known protocol de-
pendencies—can serve as robust tissue markers in multi-site neonatal studies. This directly
reinforces the premise of DBM: clinically feasible diffusion acquisitions can contain sufficient
information to recover microstructural signals (via the isotropic spectrum) without heavy re-
liance on external structural images. In other words, DBM helps align the scale of acquisition
with the scale of interpretation.

Operationally, pairing DBM with diffusion-only segmentation yielded tangible benefits. The
workflow increased the analyzable data by including 14/88 (16.0%) infants who lacked us-
able T2w scans in the preterm-term cohort, and supported stable regional analyses between
scanners. More broadly, the development and injury applications show that isotropic dif-
fusion information can be extracted natively from short, motion-tolerant neonatal proto-
cols—without densely sampled, long multi-shell acquisitions—while still delivering spectrum-
level interpretability. Multi-sequence or multi-shell data remain valuable when available, but
a dMRI-native path is viable and scalable in routine clinical settings.

To make this workflow portable across clinical sites, we address protocol variability at both
the model and data levels. First, on the acquisition–model side, DBM is designed for robust-
ness: its minimal anisotropy-adjustment term reduces dependence on dense angular sampling,
shifting the information burden toward a clinically manageable spread of b-values for spectral
recovery within neonatal safety and SNR limits. Second, at the data level, fundamental dMRI
normalization is critical: expressing diffusion signals as attenuation S/S0 provides a unit-less
input that is less sensitive to receive gain, coil differences, and main magnetic field strength,
which is why diffusivity estimates (e.g., from DTI) are relatively comparable across scanners
in practice. Our workflow adheres to this principle for DBM inputs, while acknowledging that
protocol factors (TE and TR, noise and EPI distortions) may still introduce systematic bias
in absolute metric values. Third, consistent preprocessing—including denoising, motion and
susceptibility correction—further mitigates site-specific technical confounds in downstream
statistics.

With these interconnected guardrails—a robust model, fundamental signal normalization,
and consistent preprocessing—the combination of DBM and diffusion-only segmentation
turns feasibility (short scans, fewer directions) and specificity (spectral localization) into
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two sides of the same coin: a diffusion-native workflow that is both clinically compatible and
biologically informative.

8.2.5 Translational outlook

The validation of the Diffusion Bubble Model (DBM) across this thesis lays the groundwork
for translating it from a research prototype into a robust platform for discovery and clinical
decision support. A pragmatic pathway comprises three interconnected stages: technical
hardening, biological grounding, and clinical integration.

Technical hardening This work establishes a clinically feasible dMRI-25-direction protocol
and the diffusion-only nnU-Net, forming a structural-agnostic pipeline. The immediate next
step is to package the end-to-end workflow as a containerized, BIDS-compatible application
with version-locked dependencies and embedded quality-control and uncertainty metrics (e.g.,
motion, eddy and susceptibility residuals, segmentation confidence, spectral-fit diagnostics)
to guarantee multi-site reproducibility.

To maximize community adoption and benchmarking, we plan to integrate DBM into es-
tablished quantitative MRI platforms. Implementation in qMRLab, a modular open-source
project from our lab, provides a natural host for DBM with a graphical interface [220].
A complementary implementation in DIPY (Python) will enable a direct comparison with
other diffusion models and facilitate integration into large-scale processing pipelines [179].
This dual-pathway strategy will transform DBM from a lab-specific tool into a standardized
community-vetted resource. Finally, a prospective, pre-registered multi-site study will quan-
tify test–retest repeatability, scanner and sequence variance components, and cross-protocol
calibration, establishing scanner-specific reference norms.

Biological grounding Linking neonatal DBM metrics—such as maturation delay indices
or PWML subtype patterns—to longitudinal neurodevelopmental outcomes will determine
their prognostic value. Integration with complementary MRI modalities and histopatholog-
ical correlation will further strengthen biological interpretation and refine the mechanistic
meaning of spectral shifts.

Clinical integration DBM outputs (currently in NIfTI format) will be delivered through
an automated reporting layer with DICOM-compatible exports—bridging research outputs
to PACS—and concise, clinician-facing summaries (regional maturational percentile ranks
and PWML subtype probabilities with suggested follow-up). Embedding these outputs into
decision-support systems and longitudinal registry would enable risk stratification and early
intervention planning.
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Ultimately, the translation of DBM extends beyond adopting a new imaging model. It
outlines a path toward precision neonatology in which microstructure health is quantified,
monitored, and acted upon to improve outcomes for the most vulnerable infants.

8.2.6 Limitations and future work

Despite completing the initial phase of this project—model design, segmentation, evaluation
of preterm catch-up, and PWML microstructure assessment—several inherent limitations
and improvement areas remain.

Generalizability of the framework While DBM performs well in characterizing heterogeneity
within PWML, an open question is whether the same spectral language can disentangle more
complex mixed pathologies—for example, hypoxic–ischemic injury interleaved with inflam-
matory processes. Addressing this will require testing DBM on cohorts with richer etiological
diversity and designing analyses that explicitly probe interaction patterns across the spec-
trum (e.g., concurrent fast-tail inflation and slow-end dominance), rather than assuming a
single dominant process per voxel.

From association to mechanism The present work establishes strong imaging biomarkers, but
the biological interpretation of spectral features must be consolidated through histopatholog-
ical correlation and longitudinal outcome linkage. In particular, validating whether fast-tail
inflation maps onto vasogenic edema and whether left-shifted, fast-reduced spectra reflect
cellular reorganization will benefit from tissue studies and from prospective follow-up linking
DBM metrics to neurodevelopmental outcomes at 6/12/24 months.

From framework to tool A critical next step is to translate the framework into a clinical tool:
automating and standardizing the full pipeline, hardening it for multi-site use, and convert-
ing DBM spectral metrics into predictive decision support (e.g., risk scores indexed by PMA,
trajectory alerts, and lesion-type likelihoods). This will involve protocol harmonization, un-
certainty reporting, and prospective evaluation against actionable endpoints to demonstrate
added value over conventional diffusion and structural imaging.

8.3 Concluding Perspective

In conclusion, the contribution of this thesis extends beyond the DBM model or any single
application. Its central value is to articulate a pathway toward a unified, physics-grounded
microstructural language that coherently explains both typical maturation and focal injury
within the same diffusivity spectrum, moving away from piecemeal, sequence-specific read-
outs. By coupling a pragmatic dMRI-native workflow with spectral analysis, we outline
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how neonatal diffusion MRI can deliver actionable, whole-brain assessment under clinically
feasible protocols. This vision complements rather than replaces existing multi-sequence
imaging, while providing a common substrate for multi-site harmonization and outcome-
linked biomarkers in the at-risk neonatal brain. In this sense, DBM offers not only a model
but a reproducible workflow on which routine, spectrum-resolved neonatal assessment could
be built.
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CHAPTER 9 CONCLUSION

This thesis set out to make diffusion MRI more informative and practical for the neonatal
brain. We introduced the Diffusion Bubble Model (DBM), a spectrum-based framework that
works within the constraints of neonatal dMRI: short scans, motion, and rapidly evolving
microstructure, and demonstrated an end-to-end workflow from acquisition and modeling to
diffusion-based segmentation, developmental inference in preterm and term infants, and lesion
characterization. Across simulations, in vivo analyses and two application domains (punctate
white matter lesions, PWML; and maturation around term equivalent age, TEA), DBM
provides specific and biomedical interpretable diffusion readouts while remaining compatible
with neonatal practice. In short, DBM increases the information content of neonatal dMRI
without sacrificing feasibility, and the diffusion-first workflow operates when structural images
are unavailable.

Summary of Contributions

1. Neonatal-first diffusion model: developed the Diffusion Bubble Model (DBM) to recover
an isotropic diffusivity spectrum and derive compact, robust metrics: mean diffusiv-
ity, fast diffusion fraction, slow diffusion fraction, and spectral variance and skewness;
validated key behaviors in simulations, including invariance to anisotropy changes at
fixed mean diffusivity, linear scaling of the anisotropy-adjusted fraction with FA, and
faithful recovery of fast and slow components; enabling specific, interpretable neonatal
diffusion markers that remain estimable under short scans and motion.

2. Practical deployment under clinical constraints: optimized acquisition and prepro-
cessing for neonatal-feasible protocols and showed DTI comparability (25- versus 32-
direction) with narrow Bland–Altman limits and high reliability; demonstrated that
DBM metrics remain stable for cohort studies despite modest differences in direction
counts and b-value shell sampling; DBM behaved consistently in vivo under clinically
feasible sampling, supporting reproducible neonatal dMRI pipelines.

3. Diffusion-first workflow: integrated acquisition, modeling, segmentation, and inference
to operate with diffusion MRI alone when structural images are unavailable; verified
feasibility via diffusion-only tissue segmentation and DBM biomarker stability across
cohorts; allowing processing and analysis in time-limited scans, motion-degraded stud-
ies, and retrospective datasets lacking usable T1w and T2w.

4. Diffusion-only tissue segmentation: trained a diffusion-only nnU-Net using dMRI-



124

derived features to produce tissue maps without reliance on T2w contrast; evalu-
ated performance in-domain and out-of-domain to show internal accuracy and accept-
able cross-site generalization, mitigating known T2w variability; enabling diffusion-first
workflows where microstructure mapping and segmentation share the same acquisition.

5. Preterm vs. term maturation at TEA and across late-preterm to 43 weeks: modeled
maturation with mixed-effects analyses at TEA and longitudinally across late-preterm
to 43 weeks; found largely parallel between groups with a delayed onset (offset) in
preterm infants, yielding regional TEA residuals despite volume catch-up after head-
size adjustment.

6. PWML characterization with spectral insight: quantified differences among the lesion,
contralateral and matched control region using spectral readouts; Observed two PWML
subtypes: wet (fast-tail inflation, skewness ↑, with a left shift) and dry (predominant
left shift with reduced fast fraction) phenotypes, despite similar reductions in T2w and
comparable decreases in MD tensors between subtypes.

Interpretation and Impact

1. Microstructural specificity: focusing on the isotropic spectrum separates faster (more
extracellular) from slower (more restricted) components; providing interpretable biomark-
ers for edema-like processes, myelination trajectories, and lesion microenvironments.

2. Practicality: working with short neonatal scans and tolerates moderate protocol varia-
tion; supporting translation beyond a single scanner or study.

3. Workflow minimalism: operating on diffusion data alone reduces dependence on site-
specific structural contrast; simplifying cross-site deployment and expanding utility to
settings where structural images are unavailable or unusable.

4. Decision-support potential: in PWML, compact spectral metrics distinguish subtypes;
in development, they reveal timing shifts and residual gaps—promising for risk strati-
fication, subtyping, and longitudinal monitoring (pending prospective validation).

Concluding Remarks

This thesis advances neonatal diffusion MRI along two axes that rarely meet—biophysical
specificity and clinical feasibility—by introducing DBM and a diffusion-first workflow. By
moving beyond scalar averages to a spectrum-resolved representation, DBM clarifies both
typical maturation and PWML heterogeneity, providing a foundation for deployable, repro-
ducible biomarkers for the vulnerable neonatal brain and laying the groundwork for precise,
non-invasive microstructural assessment in routine neonatal care.



125

REFERENCES

[1] E. O. Ohuma et al., “National, regional, and global estimates of preterm birth in 2020,
with trends from 2010: A systematic analysis,” Obstet. Anesth. Dig., vol. 44, no. 3, pp.
150–151, Sep. 2024.

[2] J. L. Y. Cheong et al., “Neurodevelopment at age 9 years among children born at 32
to 36 weeks’ gestation,” JAMA Netw. Open, vol. 7, no. 11, p. e2445629, Nov. 2024.

[3] J. H. Jin et al., “Long-term cognitive, executive, and behavioral outcomes of moderate
and late preterm at school age,” Clin. Exp. Pediatr., vol. 63, no. 6, pp. 219–225, Jun.
2020.

[4] D. Pecheva et al., “A tract-specific approach to assessing white matter in preterm
infants,” Neuroimage, vol. 157, pp. 675–694, Aug. 2017.

[5] A. L. A. Nguyen et al., “The brain’s kryptonite: Overview of punctate white matter
lesions in neonates,” Int. J. Dev. Neurosci., vol. 77, pp. 77–88, Oct. 2019.

[6] C. A. M. de Bruijn et al., “Neurodevelopmental consequences of preterm punctate white
matter lesions: a systematic review,” Pediatr. Res., vol. 93, no. 6, pp. 1480–1490, May
2023.

[7] N. Tusor et al., “Punctate white matter lesions associated with altered brain develop-
ment and adverse motor outcome in preterm infants,” Sci. Rep., vol. 7, no. 1, p. 13250,
Oct. 2017.

[8] Y. Zhang et al., “Quantitative analysis of punctate white matter lesions in neonates
using quantitative susceptibility mapping and R2* relaxation,” AJNR Am. J. Neuro-
radiol., vol. 40, no. 7, pp. 1221–1226, Jul. 2019.

[9] J. P. Lerch et al., “Studying neuroanatomy using MRI,” Nat. Neurosci., vol. 20, no. 3,
pp. 314–326, Feb. 2017.

[10] J. Dubois et al., “MRI of the neonatal brain: A review of methodological challenges
and neuroscientific advances,” J. Magn. Reson. Imaging, vol. 53, no. 5, pp. 1318–1343,
May 2021.

[11] A. L. Alexander et al., “Diffusion tensor imaging of the brain,” Neurotherapeutics,
vol. 4, no. 3, pp. 316–329, Jul. 2007.



126

[12] D. Le Bihan et al., “MR imaging of intravoxel incoherent motions: application to
diffusion and perfusion in neurologic disorders,” Radiology, vol. 161, no. 2, pp. 401–
407, Nov. 1986.

[13] V. J. Wedeen et al., “Mapping complex tissue architecture with diffusion spectrum
magnetic resonance imaging,” Magn. Reson. Med., vol. 54, no. 6, pp. 1377–1386, Dec.
2005.

[14] K. M. Bennett et al., “Characterization of continuously distributed cortical water dif-
fusion rates with a stretched-exponential model,” Magn. Reson. Med., vol. 50, no. 4,
pp. 727–734, Oct. 2003.

[15] J. Jensen et al., “Quantifying non-gaussian water diffusion by means of pulsed-field-
gradient MRI,” Proc. Intl. Soc. Mag. Reson. Med., vol. 11, p. 2154, 2003.

[16] C. Pierpaoli et al., “Diffusion tensor MR imaging of the human brain,” Radiology, vol.
201, no. 3, pp. 637–648, Dec. 1996.

[17] M. Palombo et al., “SANDI: A compartment-based model for non-invasive apparent
soma and neurite imaging by diffusion MRI,” Neuroimage, vol. 215, no. 116835, p.
116835, Jul. 2020.

[18] I. O. Jelescu et al., “Neurite exchange imaging (NEXI): A minimal model of diffusion
in gray matter with inter-compartment water exchange,” Neuroimage, vol. 256, no.
119277, p. 119277, Aug. 2022.

[19] S. G. Waxman et al., The axon: Structure, function and pathophysiology, S. G. Waxman
et al., Eds. New York, NY: Oxford University Press, Mar. 1995.

[20] D. S. Novikov et al., “Quantifying brain microstructure with diffusion MRI: Theory
and parameter estimation: Brain microstructure with dMRI: Theory and parameter
estimation,” NMR Biomed., vol. 32, no. 4, p. e3998, Apr. 2019.

[21] C. Beaulieu, “The basis of anisotropic water diffusion in the nervous system - a technical
review,” NMR Biomed., vol. 15, no. 7-8, pp. 435–455, Nov. 2002.

[22] D. K. Jones et al., “White matter integrity, fiber count, and other fallacies: the do’s
and don’ts of diffusion MRI,” Neuroimage, vol. 73, pp. 239–254, Jun. 2013.

[23] I. O. Jelescu et al., “Design and validation of diffusion MRI models of white matter,”
Front. Phys., vol. 28, Nov. 2017.



127

[24] E. Zhang et al., “Diffusion bubble model: A novel MRI approach for detection and
subtyping of neonatal punctate white matter lesions,” Neuroimage, vol. 317, no. 121324,
p. 121324, Aug. 2025.

[25] N. S. White et al., “Probing tissue microstructure with restriction spectrum imaging:
Histological and theoretical validation,” Hum. Brain Mapp., vol. 34, no. 2, pp. 327–346,
Feb. 2013.

[26] H. Zhang et al., “NODDI: practical in vivo neurite orientation dispersion and density
imaging of the human brain,” Neuroimage, vol. 61, no. 4, pp. 1000–1016, Jul. 2012.

[27] Y. Wang et al., “Quantification of increased cellularity during inflammatory demyeli-
nation,” Brain, vol. 134, no. Pt 12, pp. 3590–3601, Dec. 2011.

[28] C. C. Conlin et al., “Improved characterization of diffusion in normal and cancerous
prostate tissue through optimization of multicompartmental signal models,” J. Magn.
Reson. Imaging, vol. 53, no. 2, pp. 628–639, Feb. 2021.

[29] D. A. Yablonskiy et al., “Statistical model for diffusion attenuated MR signal,” Magn.
Reson. Med., vol. 50, no. 4, pp. 664–669, Oct. 2003.

[30] D. Varadarajan et al., “A theoretical signal processing framework for linear diffusion
MRI: Implications for parameter estimation and experiment design,” Neuroimage, vol.
161, pp. 206–218, Nov. 2017.

[31] D. S. Tuch, “Q-ball imaging,” Magn. Reson. Med., vol. 52, no. 6, pp. 1358–1372, Dec.
2004.

[32] E. Özarslan et al., “Mean apparent propagator (MAP) MRI: a novel diffusion imaging
method for mapping tissue microstructure,” Neuroimage, vol. 78, pp. 16–32, Sep. 2013.

[33] A. V. Avram et al., “Clinical feasibility of using mean apparent propagator (MAP)
MRI to characterize brain tissue microstructure,” Neuroimage, vol. 127, pp. 422–434,
Feb. 2016.

[34] F. Sun et al., “Research progress in diffusion spectrum imaging,” Brain Sci., vol. 13,
no. 10, p. 1497, Oct. 2023.

[35] A. Tobisch et al., “Compressed sensing diffusion spectrum imaging for accelerated dif-
fusion microstructure MRI in long-term population imaging,” Front. Neurosci., vol. 12,
p. 650, Sep. 2018.



128

[36] Q. Tian et al., “Generalized diffusion spectrum magnetic resonance imaging (GDSI)
for model-free reconstruction of the ensemble average propagator,” Neuroimage, vol.
189, pp. 497–515, Apr. 2019.

[37] C.-W. Chiang et al., “Quantifying white matter tract diffusion parameters in the pres-
ence of increased extra-fiber cellularity and vasogenic edema,” Neuroimage, vol. 101,
pp. 310–319, Nov. 2014.

[38] Y. Wang et al., “Differentiation and quantification of inflammation, demyelination and
axon injury or loss in multiple sclerosis,” Brain, vol. 138, no. Pt 5, pp. 1223–1238, May
2015.

[39] Z. Ye et al., “Diffusion histology imaging combining diffusion basis spectrum imaging
(DBSI) and machine learning improves detection and classification of glioblastoma
pathology,” Clin. Cancer Res., vol. 26, no. 20, pp. 5388–5399, Oct. 2020.

[40] T.-H. Lin et al., “Noninvasive quantification of axonal loss in the presence of tissue
swelling in traumatic spinal cord injury mice,” J. Neurotrauma, vol. 36, no. 15, pp.
2308–2315, Aug. 2019.

[41] R. H. Han et al., “Diffusion basis spectrum imaging as an adjunct to conventional
MRI leads to earlier diagnosis of high-grade glioma tumor progression versus treatment
effect,” Neurooncol. Adv., vol. 5, no. 1, p. vdad050, Apr. 2023.

[42] Q. Wang et al., “Quantification of white matter cellularity and damage in preclinical
and early symptomatic alzheimer’s disease,” NeuroImage Clin., vol. 22, no. 101767, p.
101767, Mar. 2019.

[43] X. Wang et al., “Diffusion basis spectrum imaging detects and distinguishes coexisting
subclinical inflammation, demyelination and axonal injury in experimental autoimmune
encephalomyelitis mice: DBSI detects subclinical pathologies,” NMR Biomed., vol. 27,
no. 7, pp. 843–852, Jul. 2014.

[44] D. Jayasekera et al., “Analysis of combined clinical and diffusion basis spectrum imag-
ing metrics to predict the outcome of chronic cervical spondylotic myelopathy following
cervical decompression surgery,” Journal of neurosurgery. Spine, vol. 37, no. 4, pp. 1–
11, May 2022.

[45] A. E. Rodríguez-Soto et al., “Characterization of the diffusion signal of breast tissues
using multi-exponential models,” Magn. Reson. Med., vol. 87, no. 4, pp. 1938–1951,
Apr. 2022.



129

[46] C. E. Palmer et al., “Microstructural development from 9 to 14 years: Evidence from
the ABCD study,” Dev. Cogn. Neurosci., vol. 53, no. 101044, p. 101044, Feb. 2022.

[47] R. A. Carper et al., “Restriction spectrum imaging as a potential measure of cortical
neurite density in autism,” Front. Neurosci., vol. 10, p. 610, 2016.

[48] N. S. White et al., “Improved conspicuity and delineation of high-grade primary and
metastatic brain tumors using “restriction spectrum imaging”: quantitative comparison
with high B-value DWI and ADC,” AJNR Am. J. Neuroradiol., vol. 34, no. 5, pp. 958–
64, S1, May 2013.

[49] N. S. White, “Diffusion-weighted imaging in cancer: physical foundations and appli-
cations of restriction spectrum imaging,” Cancer Res., vol. 74, no. 17, pp. 4638–4652,
Sep. 2014.

[50] R. L. Brunsing et al., “Restriction spectrum imaging: An evolving imaging biomarker
in prostate MRI,” J. Magn. Reson. Imaging, vol. 45, no. 2, pp. 323–336, Feb. 2017.

[51] K. M. Bennett et al., “Water diffusion heterogeneity index in the human brain is in-
sensitive to the orientation of applied magnetic field gradients,” Magn. Reson. Med.,
vol. 56, no. 2, pp. 235–239, Aug. 2006.

[52] T. C. Kwee et al., “Intravoxel water diffusion heterogeneity imaging of human high-
grade gliomas,” NMR Biomed., vol. 23, no. 2, pp. 179–187, Feb. 2010.

[53] Y. Bai et al., “Grading of gliomas by using monoexponential, biexponential, and
stretched exponential diffusion-weighted MR imaging and diffusion kurtosis MR imag-
ing,” Radiology, vol. 278, no. 2, pp. 496–504, Feb. 2016.

[54] X. Chen et al., “Stretched-exponential model diffusion-weighted imaging as a poten-
tial imaging marker in preoperative grading and assessment of proliferative activity of
gliomas,” Am. J. Transl. Res., vol. 10, no. 8, pp. 2659–2668, Aug. 2018.

[55] R. Bedair et al., “Assessment of early treatment response to neoadjuvant chemother-
apy in breast cancer using non-mono-exponential diffusion models: a feasibility study
comparing the baseline and mid-treatment MRI examinations,” Eur. Radiol., vol. 27,
no. 7, pp. 2726–2736, Jul. 2017.

[56] N. Chaudhary et al., “Monoexponential, biexponential and stretched exponential mod-
els of diffusion weighted magnetic resonance imaging in glioma in relation to histopatho-
logic grade and ki-67 labeling index using high B values,” Am. J. Transl. Res., vol. 13,
no. 11, pp. 12 480–12 494, Nov. 2021.



130

[57] C. C. Conlin et al., “A multicompartmental diffusion model for improved assessment
of whole-body diffusion-weighted imaging data and evaluation of prostate cancer bone
metastases,” Radiol. Imaging Cancer, vol. 5, no. 1, p. e210115, Jan. 2023.

[58] E. H. Kim et al., “An artificial intelligence model using diffusion basis spectrum imaging
metrics accurately predicts clinically significant prostate cancer,” J. Urol., p. 4456, Jan.
2025.

[59] Z. Ye et al., “Deep neural network analysis employing diffusion basis spectrum imag-
ing metrics as classifiers improves prostate cancer detection and grading,” bioRxiv, p.
2021.03. 22.436514, Mar. 2021.

[60] S. Loubrie et al., “Discrimination between benign and malignant lesions with restriction
spectrum imaging MRI in an enriched breast cancer screening cohort,” J. Magn. Reson.
Imaging, vol. 61, no. 4, pp. 1876–1887, Apr. 2025.

[61] J. K. Zhang et al., “Diffusion MRI metrics characterize postoperative clinical outcomes
after surgery for cervical spondylotic myelopathy,” Neurosurgery, vol. 96, no. 1, pp.
69–77, Jan. 2025.

[62] M. Pietsch et al., “A framework for multi-component analysis of diffusion MRI data
over the neonatal period,” Neuroimage, vol. 186, pp. 321–337, Feb. 2019.

[63] L. Gui et al., “Longitudinal study of neonatal brain tissue volumes in preterm infants
and their ability to predict neurodevelopmental outcome,” Neuroimage, vol. 185, pp.
728–741, Jan. 2019.

[64] J. Romberg et al., “MRI-based brain volumes of preterm infants at term: a systematic
review and meta-analysis,” Arch. Dis. Child. Fetal Neonatal Ed., vol. 107, no. 5, pp.
520–526, Sep. 2022.

[65] M. Bouyssi-Kobar et al., “Third trimester brain growth in preterm infants compared
with in utero healthy fetuses,” Pediatrics, vol. 138, no. 5, p. e20161640, Nov. 2016.

[66] A. Benavides et al., “Sex-specific alterations in preterm brain,” Pediatr. Res., vol. 85,
no. 1, pp. 55–62, Jan. 2019.

[67] Y. T. Khan et al., “Sex differences in human brain structure at birth,” Biol. Sex Differ.,
vol. 15, no. 1, p. 81, Oct. 2024.



131

[68] A. Lind et al., “Associations between regional brain volumes at term-equivalent age
and development at 2 years of age in preterm children,” Pediatr. Radiol., vol. 41, no. 8,
pp. 953–961, Aug. 2011.

[69] J. L. Y. Cheong et al., “Brain volumes at term-equivalent age are associated with 2-
year neurodevelopment in moderate and late preterm children,” J. Pediatr., vol. 174,
pp. 91–97.e1, Jul. 2016.

[70] K. Keunen et al., “Brain volumes at term-equivalent age in preterm infants: Imaging
biomarkers for neurodevelopmental outcome through early school age,” J. Pediatr., vol.
172, pp. 88–95, May 2016.

[71] D. K. Thompson et al., “Neonate hippocampal volumes: prematurity, perinatal pre-
dictors, and 2-year outcome,” Ann. Neurol., vol. 63, no. 5, pp. 642–651, May 2008.

[72] C. J. L. Murray et al., “Disability-adjusted life years (DALYs) for 291 diseases and
injuries in 21 regions, 1990-2010: a systematic analysis for the global burden of disease
study 2010,” Lancet, vol. 380, no. 9859, pp. 2197–2223, Dec. 2012.

[73] L. Liu et al., “Global, regional, and national causes of under-5 mortality in 2000-15: an
updated systematic analysis with implications for the sustainable development goals,”
Lancet, vol. 388, no. 10063, pp. 3027–3035, Dec. 2016.

[74] S. Chawanpaiboon et al., “Global, regional, and national estimates of levels of preterm
birth in 2014: a systematic review and modelling analysis,” Lancet Glob. Health, vol. 7,
no. 1, pp. e37–e46, Jan. 2019.

[75] C. Lebel et al., “The development of brain white matter microstructure,” Neuroimage,
vol. 182, pp. 207–218, Nov. 2018.

[76] J. Dubois et al., “Mri of the neonatal brain: A review of methodological challenges and
neuroscientific advances,” Journal of Magnetic Resonance Imaging, vol. 53, no. 5, pp.
1318–1343, 2021.

[77] S. C. L. Deoni et al., “Mapping infant brain myelination with magnetic resonance
imaging,” Journal of Neuroscience, vol. 31, no. 2, pp. 784–791, 2011.

[78] S. C. L. Deoni, “Investigating white matter development in infancy and early childhood
using myelin water fraction and relaxation time mapping,” NeuroImage, vol. 63, no. 3,
pp. 1038–1053, 2012.



132

[79] P. I. Yakovlev et al., “The myelogenetic cycles of regional maturation of the brain,” in
Regional Development of the Brain in Early Life, A. Minkowski, Ed. Oxford: Blackwell
Scientific Publications, 1967, pp. 3–70.

[80] M. Ouyang et al., “Differential cortical microstructural maturation in the preterm
human brain with diffusion kurtosis and tensor imaging,” Proceedings of the National
Academy of Sciences of the USA, vol. 116, no. 10, pp. 4681–4688, 2019.

[81] M. Anjari et al., “Diffusion tensor imaging with tract-based spatial statistics reveals
local white matter abnormalities in preterm infants,” Neuroimage, vol. 35, no. 3, pp.
1021–1027, Apr. 2007.

[82] C. van Pul et al., “Quantitative fiber tracking in the corpus callosum and internal
capsule reveals microstructural abnormalities in preterm infants at term-equivalent
age,” AJNR Am. J. Neuroradiol., vol. 33, no. 4, pp. 678–684, Apr. 2012.

[83] Y. Liu et al., “White matter abnormalities are related to microstructural changes in
preterm neonates at term-equivalent age: a diffusion tensor imaging and probabilistic
tractography study,” AJNR Am. J. Neuroradiol., vol. 33, no. 5, pp. 839–845, May 2012.

[84] Y. Arzoumanian et al., “Diffusion tensor brain imaging findings at term-equivalent age
may predict neurologic abnormalities in low birth weight preterm infants,” AJNR Am.
J. Neuroradiol., vol. 24, no. 8, pp. 1646–1653, Sep. 2003.

[85] E. G. Duerden et al., “Tract-based spatial statistics in preterm-born neonates predicts
cognitive and motor outcomes at 18 months,” AJNR Am. J. Neuroradiol., vol. 36, no. 8,
pp. 1565–1571, Aug. 2015.

[86] T. Hasegawa et al., “Development of corpus callosum in preterm infants is affected
by the prematurity: in vivo assessment of diffusion tensor imaging at term-equivalent
age,” Pediatr. Res., vol. 69, no. 3, pp. 249–254, Mar. 2011.

[87] B. J. M. van Kooij et al., “Fiber tracking at term displays gender differences regarding
cognitive and motor outcome at 2 years of age in preterm infants,” Pediatr. Res., vol. 70,
no. 6, pp. 626–632, Dec. 2011.

[88] J. A. Kimpton et al., “Diffusion magnetic resonance imaging assessment of regional
white matter maturation in preterm neonates,” Neuroradiology, vol. 63, no. 4, pp.
573–583, Apr. 2021.



133

[89] D. C. Dean, 3rd et al., “Mapping white matter microstructure in the one month human
brain,” Sci. Rep., vol. 7, no. 1, p. 9759, Aug. 2017.

[90] Z. Eaton-Rosen et al., “Longitudinal measurement of the developing grey matter in
preterm subjects using multi-modal MRI,” Neuroimage, vol. 111, pp. 580–589, May
2015.

[91] R. Dimitrova et al., “Preterm birth alters the development of cortical microstructure
and morphology at term-equivalent age,” Neuroimage, vol. 243, no. 118488, p. 118488,
Nov. 2021.

[92] W. Wang et al., “Altered cortical microstructure in preterm infants at term-equivalent
age relative to term-born neonates,” Cereb. Cortex, vol. 33, no. 3, pp. 651–662, Jan.
2023.

[93] J. Shi et al., “Initial application of diffusional kurtosis imaging in evaluating brain
development of healthy preterm infants,” PLoS One, vol. 11, no. 4, p. e0154146, Apr.
2016.

[94] X. Zhao et al., “The value of diffusion kurtosis imaging in detecting delayed brain
development of premature infants,” Front. Neurol., vol. 12, p. 789254, Dec. 2021.

[95] X. Li et al., “Mapping white matter maturational processes and degrees on neonates by
diffusion kurtosis imaging with multiparametric analysis,” Hum. Brain Mapp., vol. 43,
no. 2, pp. 799–815, Feb. 2022.

[96] K. Pannek et al., “Fixel-based analysis reveals alterations is brain microstructure and
macrostructure of preterm-born infants at term equivalent age,” NeuroImage Clin.,
vol. 18, pp. 51–59, Jan. 2018.

[97] K. Pannek, “Brain microstructure and morphology of very preterm-born infants at
term equivalent age: Associations with motor and cognitive outcomes at 1 and 2 years,”
Neuroimage, vol. 221, no. 117163, p. 117163, Nov. 2020.

[98] D. Pecheva et al., “Fixel-based analysis of the preterm brain: Disentangling bundle-
specific white matter microstructural and macrostructural changes in relation to clinical
risk factors,” NeuroImage Clin., vol. 23, no. 101820, p. 101820, Apr. 2019.

[99] D. Batalle et al., “Early development of structural networks and the impact of prema-
turity on brain connectivity,” Neuroimage, vol. 149, pp. 379–392, Apr. 2017.



134

[100] J.-W. Jeong et al., “Neonatal encephalopathy prediction of poor outcome with diffusion-
weighted imaging connectome and fixel-based analysis,” Pediatr. Res., vol. 91, no. 6,
pp. 1505–1515, May 2022.

[101] M. Ouyang et al., “Diffusion-MRI-based regional cortical microstructure at birth for
predicting neurodevelopmental outcomes of 2-year-olds,” Elife, vol. 9, Dec. 2020.

[102] C. J. Kelly et al., “Abnormal microstructural development of the cerebral cortex in
neonates with congenital heart disease is associated with impaired cerebral oxygen
delivery,” J. Am. Heart Assoc., vol. 8, no. 5, p. e009893, Mar. 2019.

[103] M. Bastiani et al., “Automated processing pipeline for neonatal diffusion MRI in the
developing human connectome project,” Neuroimage, vol. 185, pp. 750–763, Jan. 2019.

[104] D. Christiaens et al., “Scattered slice SHARD reconstruction for motion correction in
multi-shell diffusion MRI,” Neuroimage, vol. 225, no. 117437, p. 117437, Jan. 2021.

[105] K. M. Huynh et al., “Probing tissue microarchitecture of the baby brain via spherical
mean spectrum imaging,” IEEE Trans. Med. Imaging, vol. 39, no. 11, pp. 3607–3618,
Nov. 2020.

[106] P. S. Bobba et al., “Age-related topographic map of magnetic resonance diffusion met-
rics in neonatal brains,” Hum. Brain Mapp., vol. 43, no. 14, pp. 4326–4334, Oct. 2022.

[107] W. Liang et al., “A comparative study of the superior longitudinal fasciculus subdivi-
sions between neonates and young adults,” Brain Struct. Funct., vol. 227, no. 8, pp.
2713–2730, Nov. 2022.

[108] A. S. Verschuur et al., “Feasibility study to unveil the potential: considerations of
constrained spherical deconvolution tractography with unsedated neonatal diffusion
brain MRI data,” Front. Radiol., vol. 4, p. 1416672, Jun. 2024.

[109] N. Kunz et al., “Assessing white matter microstructure of the newborn with multi-
shell diffusion MRI and biophysical compartment models,” Neuroimage, vol. 96, pp.
288–299, Aug. 2014.

[110] A. P. Kansagra et al., “Microstructural maturation of white matter tracts in encephalo-
pathic neonates,” Clin. Imaging, vol. 40, no. 5, pp. 1009–1013, Sep. 2016.

[111] S. Karmacharya et al., “Advanced diffusion imaging for assessing normal white matter
development in neonates and characterizing aberrant development in congenital heart
disease,” NeuroImage Clin., vol. 19, pp. 360–373, May 2018.



135

[112] D. Fenchel et al., “Development of microstructural and morphological cortical profiles
in the neonatal brain,” Cereb. Cortex, vol. 30, no. 11, pp. 5767–5779, Oct. 2020.

[113] A. Uus et al., “Multi-channel 4D parametrized atlas of macro- and microstructural
neonatal brain development,” Front. Neurosci., vol. 15, p. 661704, Jun. 2021.

[114] X. Wang et al., “Application of diffusion kurtosis imaging in neonatal brain develop-
ment,” Front. Pediatr., vol. 11, p. 1112121, Mar. 2023.

[115] M. A. DiPiero et al., “Gray matter based spatial statistics framework in the 1-month
brain: insights into gray matter microstructure in infancy,” Brain Struct. Funct., vol.
229, no. 9, pp. 2445–2459, Sep. 2024.

[116] L. G. Cornette et al., “Magnetic resonance imaging of the infant brain: anatomical
characteristics and clinical significance of punctate lesions,” Arch. Dis. Child. Fetal
Neonatal Ed., vol. 86, no. 3, pp. F171–7, May 2002.

[117] K. J. Kersbergen et al., “Different patterns of punctate white matter lesions in serially
scanned preterm infants,” PLoS ONE, vol. 9, no. 10, p. e108904, Oct. 2014.

[118] X. Sun et al., “Automatic detection of punctate white matter lesions in infants using
deep learning of composite images from two cases,” Sci. Rep., vol. 13, no. 1, p. 4426,
Mar. 2023.

[119] M. Hayman et al., “Punctate white-matter lesions in the full-term newborn: Underlying
aetiology and outcome,” Eur. J. Paediatr. Neurol., vol. 23, no. 2, pp. 280–287, Mar.
2019.

[120] M. Kobayashi et al., “Diagnostic specificity of cerebral magnetic resonance imaging for
punctate white matter lesion assessment in a preterm sheep fetus model,” Reprod. Sci.,
vol. 28, no. 4, pp. 1175–1184, Apr. 2021.

[121] J. Pavaine et al., “Diffusion tensor imaging-based assessment of white matter tracts
and visual-motor outcomes in very preterm neonates,” Neuroradiology, vol. 58, no. 3,
pp. 301–310, Mar. 2016.

[122] T. Niwa et al., “Punctate white matter lesions in infants: new insights using
susceptibility-weighted imaging,” Neuroradiology, vol. 53, no. 9, pp. 669–679, Sep. 2011.

[123] A. M. Childs et al., “Magnetic resonance and cranial ultrasound characteristics of
periventricular white matter abnormalities in newborn infants,” Clin. Radiol., vol. 56,
no. 8, pp. 647–655, Aug. 2001.



136

[124] L. T. Sie et al., “Early MR features of hypoxic-ischemic brain injury in neonates with
periventricular densities on sonograms,” AJNR Am. J. Neuroradiol., vol. 21, no. 5, pp.
852–861, May 2000.

[125] L. A. Ramenghi et al., “Magnetic resonance imaging assessment of brain maturation in
preterm neonates with punctate white matter lesions,” Neuroradiology, vol. 49, no. 2,
pp. 161–167, Feb. 2007.

[126] L. Bassi et al., “Diffusion tensor imaging in preterm infants with punctate white matter
lesions,” Pediatr. Res., vol. 69, no. 6, pp. 561–566, Jun. 2011.

[127] Y. Nanba et al., “Magnetic resonance imaging regional T1 abnormalities at term accu-
rately predict motor outcome in preterm infants,” Pediatrics, vol. 120, no. 1, pp. e10–9,
Jul. 2007.

[128] T. Y. Jeon et al., “Neurodevelopmental outcomes in preterm infants: comparison of
infants with and without diffuse excessive high signal intensity on MR images at near-
term-equivalent age,” Radiology, vol. 263, no. 2, pp. 518–526, May 2012.

[129] X. Li et al., “Characterization of extensive microstructural variations associated with
punctate white matter lesions in preterm neonates,” AJNR Am. J. Neuroradiol., vol. 38,
no. 6, pp. 1228–1234, Jun. 2017.

[130] S. A. Back, “Cerebral white and gray matter injury in newborns: new insights into
pathophysiology and management,” Clin. Perinatol., vol. 41, no. 1, pp. 1–24, Mar.
2014.

[131] J. J. Volpe et al., “The developing oligodendrocyte: key cellular target in brain injury
in the premature infant,” Int. J. Dev. Neurosci., vol. 29, no. 4, pp. 423–440, Jun. 2011.

[132] O. Khwaja et al., “Pathogenesis of cerebral white matter injury of prematurity,” Arch.
Dis. Child. Fetal Neonatal Ed., vol. 93, no. 2, pp. F153–61, Mar. 2008.

[133] N. R. Saunders et al., “Barrier mechanisms in the developing brain,” Front. Pharmacol.,
vol. 3, p. 46, Mar. 2012.

[134] S. A. Back, “White matter injury in the preterm infant: pathology and mechanisms,”
Acta Neuropathol., vol. 134, no. 3, pp. 331–349, Sep. 2017.

[135] J. I. Berman et al., “Quantitative fiber tracking analysis of the optic radiation correlated
with visual performance in premature newborns,” AJNR Am. J. Neuroradiol., vol. 30,
no. 1, pp. 120–124, Jan. 2009.



137

[136] R. Trò et al., “Diffusion kurtosis imaging of neonatal spinal cord in clinical routine,”
Front. Radiol., vol. 2, p. 794981, May 2022.

[137] A. J. Hughes et al., “Motor development interventions for preterm infants: A systematic
review and meta-analysis,” Pediatrics, vol. 138, no. 4, Oct. 2016.

[138] I. Despotovic et al., “Mri segmentation of the human brain: Challenges, methods,
and applications,” Computational and Mathematical Methods in Medicine, vol. 2015,
p. 450341, 2015.

[139] I. S. Gousias et al., “Magnetic resonance imaging of the newborn brain: Manual seg-
mentation of labelled atlases in term-born and preterm infants,” NeuroImage, vol. 62,
no. 3, pp. 1499–1509, 2012.

[140] A. Makropoulos et al., “A review on automatic fetal and neonatal brain mri segmen-
tation,” NeuroImage, vol. 170, p. ???, 2018.

[141] J. E. Iglesias et al., “Multi-atlas segmentation of biomedical images: A survey,” Medical
Image Analysis, vol. 24, no. 1, pp. 205–219, 2015.

[142] S. K. Warfield et al., “Simultaneous truth and performance level estimation (staple):
An algorithm for the validation of image segmentation,” IEEE Transactions on Medical
Imaging, vol. 23, no. 7, pp. 903–921, 2004.

[143] H. Wang et al., “Multi-atlas segmentation with joint label fusion,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 3, pp. 611–623, 2013.

[144] A. Makropoulos et al., “Automatic whole brain mri segmentation of the developing
neonatal brain,” IEEE Transactions on Medical Imaging, vol. 33, no. 9, pp. 1818–1831,
2014.

[145] A. Makropoulos, “The developing human connectome project: A minimal processing
pipeline for neonatal cortical surface reconstruction,” NeuroImage, vol. 173, pp. 88–112,
2018.

[146] Y. Zhang et al., “Segmentation of brain mr images through a hidden markov ran-
dom field model and the expectation-maximization algorithm,” IEEE Transactions on
Medical Imaging, vol. 20, no. 1, pp. 45–57, 2001.

[147] K. Van Leemput et al., “Automated model-based tissue classification of MR images of
the brain,” IEEE Trans. Med. Imaging, vol. 18, no. 10, pp. 897–908, Oct. 1999.



138

[148] K. Van et al., “Automated model-based bias field correction of mr images of the brain,”
IEEE Trans. Med. Imaging, vol. 18, no. 10, pp. 885–896, Oct. 1999.

[149] P. Anbeek et al., “Probabilistic brain tissue segmentation in neonatal magnetic reso-
nance imaging,” Pediatric Research, vol. 63, pp. 158–163, 2008.

[150] L. Wang et al., “Links: Learning-based multi-source integration framework for segmen-
tation of infant brain images,” NeuroImage, vol. 108, pp. 160–172, 2015.

[151] M. Kass et al., “Snakes: Active contour models,” International Journal of Computer
Vision, vol. 1, no. 4, pp. 321–331, 1988.

[152] S. Osher et al., “Fronts propagating with curvature-dependent speed: Algorithms based
on hamilton–jacobi formulations,” Journal of Computational Physics, vol. 79, no. 1, pp.
12–49, 1988.

[153] M. Prastawa et al., “Automatic segmentation of mr images of the developing newborn
brain,” Medical Image Analysis, vol. 9, no. 5, p. ???, 2005.

[154] L. Gui et al., “Morphology-driven automatic segmentation of mr images of the neonatal
brain,” Medical Image Analysis, vol. 16, no. 8, pp. 1565–1579, 2012.

[155] O. Ronneberger et al., “U-net: Convolutional networks for biomedical image segmen-
tation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI
2015, ser. Lecture Notes in Computer Science, vol. 9351. Springer, 2015, pp. 234–241.

[156] L. Wang et al., “Benchmark on automatic 6-month-old infant brain segmentation al-
gorithms: The iSeg-2017 challenge,” IEEE Trans. Med. Imaging, vol. 38, no. 9, pp.
2219–2230, Feb. 2019.

[157] F. Milletari et al., “V-net: Fully convolutional neural networks for volumetric medical
image segmentation,” in 2016 Fourth International Conference on 3D Vision (3DV).
IEEE, 2016, pp. 565–571.

[158] F. Isensee et al., “nnu-net: A self-configuring method for deep learning-based biomed-
ical image segmentation,” Nature Methods, vol. 18, no. 2, pp. 203–211, 2021.

[159] Y. Tang et al., “Self-supervised pre-training of swin transformers for 3d medical im-
age analysis,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, 2022, also available as arXiv:2111.14791.



139

[160] A. Hatamizadeh et al., “Unetr: Transformers for 3d medical image segmentation,” in
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), 2022, also available as arXiv:2103.10504.

[161] L. Richter et al., “Accurate segmentation of neonatal brain mri with deep learning,”
Frontiers in Neuroinformatics, vol. 16, p. 1006532, 2022.

[162] A. Makropoulos et al., “The developing human connectome project: A minimal pro-
cessing pipeline for neonatal cortical surface reconstruction,” Neuroimage, vol. 173, pp.
88–112, Jun. 2018.

[163] F. Zhang et al., “Deep learning based segmentation of brain tissue from diffusion MRI,”
Neuroimage, vol. 233, no. 117934, p. 117934, Jun. 2021.

[164] M. O. Irfanoglu et al., “Evaluating corrections for eddy-currents and other EPI dis-
tortions in diffusion MRI: methodology and a dataset for benchmarking: Magnetic
resonance in medicine,” Magn. Reson. Med., vol. 81, no. 4, pp. 2774–2787, Apr. 2019.

[165] X. Gu et al., “Evaluation of six phase encoding based susceptibility distortion correction
methods for diffusion MRI,” Front. Neuroinform., vol. 13, p. 76, Dec. 2019.

[166] M. O. Irfanoglu et al., “Improved reproducibility of diffusion MRI of the human brain
with a four-way blip-up and down phase-encoding acquisition approach,” Magn. Reson.
Med., vol. 85, no. 5, pp. 2696–2708, May 2021.

[167] I. Havsteen et al., “Are movement artifacts in magnetic resonance imaging a real
problem?-a narrative review,” Front. Neurol., vol. 8, p. 232, May 2017.

[168] F. Zhang et al., “Deep learning based segmentation of brain tissue from diffusion MRI,”
Neuroimage, vol. 233, no. 117934, p. 117934, Jun. 2021.

[169] G. Theaud et al., “DORIS: A diffusion MRI-based 10 tissue class deep learning segmen-
tation algorithm tailored to improve anatomically-constrained tractography,” Front.
Neuroimaging, vol. 1, p. 917806, Sep. 2022.

[170] D. Karimi et al., “Diffusion MRI with machine learning,” Imaging Neurosci. (Camb.),
vol. 2, Nov. 2024.

[171] S. N. Jespersen et al., “Modeling dendrite density from magnetic resonance diffusion
measurements,” Neuroimage, vol. 34, no. 4, pp. 1473–1486, Feb. 2007.



140

[172] I. O. Jelescu et al., “Degeneracy in model parameter estimation for multi-
compartmental diffusion in neuronal tissue: Degeneracy in model parameter estimation
of diffusion in neural tissue,” NMR Biomed., vol. 29, no. 1, pp. 33–47, Jan. 2016.

[173] D. S. Novikov et al., “Rotationally-invariant mapping of scalar and orientational metrics
of neuronal microstructure with diffusion MRI,” arXiv [physics.bio-ph], Sep. 2016.

[174] A. Ramirez-Manzanares et al., “Diffusion basis functions decomposition for estimating
white matter intravoxel fiber geometry,” IEEE Trans. Med. Imaging, vol. 26, no. 8, pp.
1091–1102, Aug. 2007.

[175] M. DiPiero et al., “Applications of advanced diffusion MRI in early brain development:
a comprehensive review,” Brain Struct. Funct., vol. 228, no. 2, pp. 367–392, Mar. 2023.

[176] M. Jenkinson et al., “FSL,” Neuroimage, vol. 62, no. 2, pp. 782–790, Aug. 2012.

[177] A. Makropoulos et al., “Automatic whole brain MRI segmentation of the developing
neonatal brain,” IEEE Trans. Med. Imaging, vol. 33, no. 9, pp. 1818–1831, Sep. 2014.

[178] J. V. Manjón et al., “Diffusion weighted image denoising using overcomplete local
PCA,” PLoS One, vol. 8, no. 9, p. e73021, Sep. 2013.

[179] E. Garyfallidis et al., “Dipy, a library for the analysis of diffusion MRI data,” Front.
Neuroinform., vol. 8, p. 8, Feb. 2014.

[180] S. Chung et al., “Comparison of bootstrap approaches for estimation of uncertainties
of DTI parameters,” Neuroimage, vol. 33, no. 2, pp. 531–541, Nov. 2006.

[181] O. Pasternak et al., “Free water elimination and mapping from diffusion MRI,” Magn.
Reson. Med., vol. 62, no. 3, pp. 717–730, Sep. 2009.

[182] T. K. Koo et al., “A guideline of selecting and reporting intraclass correlation coef-
ficients for reliability research,” J. Chiropr. Med., vol. 15, no. 2, pp. 155–163, Jun.
2016.

[183] E. Zhang et al., “A novel method for detecting neuroinflammation in mouse brain with
sanfilippo syndrome,” in ISMRM, Jun. 2023.

[184] P. S. Hüppi et al., “Microstructural development of human newborn cerebral white
matter assessed in vivo by diffusion tensor magnetic resonance imaging,” Pediatr. Res.,
vol. 44, no. 4, pp. 584–590, Oct. 1998.



141

[185] S. Yoshida et al., “Diffusion tensor imaging of normal brain development,” Pediatr.
Radiol., vol. 43, no. 1, pp. 15–27, Jan. 2013.

[186] G. Ball et al., “The effect of preterm birth on thalamic and cortical development,”
Cereb. Cortex, vol. 22, no. 5, pp. 1016–1024, May 2012.

[187] A. Aeby et al., “Maturation of thalamic radiations between 34 and 41 weeks’ gesta-
tion: a combined voxel-based study and probabilistic tractography with diffusion tensor
imaging,” AJNR Am. J. Neuroradiol., vol. 30, no. 9, pp. 1780–1786, Oct. 2009.

[188] J. Rose et al., “Neonatal brain microstructure correlates of neurodevelopment and gait
in preterm children 18-22 mo of age: an MRI and DTI study,” Pediatr. Res., vol. 78,
no. 6, pp. 700–708, Dec. 2015.

[189] A. R. Hoy et al., “Optimization of a free water elimination two-compartment model
for diffusion tensor imaging,” Neuroimage, vol. 103, pp. 323–333, Dec. 2014.

[190] A. Qiu et al., “Diffusion tensor imaging for understanding brain development in early
life,” Annu. Rev. Psychol., vol. 66, no. 1, pp. 853–876, Jan. 2015.

[191] K. J. Kersbergen et al., “Microstructural brain development between 30 and 40 weeks
corrected age in a longitudinal cohort of extremely preterm infants,” Neuroimage, vol.
103, pp. 214–224, Dec. 2014.

[192] P. G. Batchelor et al., “Anisotropic noise propagation in diffusion tensor MRI sampling
schemes,” Magn. Reson. Med., vol. 49, no. 6, pp. 1143–1151, Jun. 2003.

[193] A. H. Cross et al., “A new imaging modality to non-invasively assess multiple sclerosis
pathology,” J. Neuroimmunol., vol. 304, pp. 81–85, Mar. 2017.

[194] A. Makropoulos et al., “A review on automatic fetal and neonatal brain MRI segmen-
tation,” Neuroimage, vol. 170, pp. 231–248, Apr. 2018.

[195] C. N. Devi et al., “Neonatal brain MRI segmentation: A review,” Comput. Biol. Med.,
vol. 64, pp. 163–178, Sep. 2015.

[196] F. Isensee et al., “nnU-net: a self-configuring method for deep learning-based biomed-
ical image segmentation,” Nat. Methods, vol. 18, no. 2, pp. 203–211, Feb. 2021.

[197] D. Karimi et al., “Detailed delineation of the fetal brain in diffusion MRI via multi-task
learning,” ArXiv, Sep. 2024.



142

[198] L. Richter et al., “Accurate segmentation of neonatal brain MRI with deep learning,”
Front. Neuroinform., vol. 16, p. 1006532, Sep. 2022.

[199] Y. Sui et al., “Isotropic MRI super-resolution reconstruction with multi-scale gradient
field prior,” Med. Image Comput. Comput. Assist. Interv., vol. 11766, pp. 3–11, Oct.
2019.

[200] Y. Sui, “Learning a gradient guidance for spatially isotropic mri super-resolution re-
construction,” Med. Image Comput. Comput. Assist. Interv., vol. 12262, pp. 136–146,
Oct. 2020.

[201] S. Fadnavis et al., “Patch2Self: Denoising diffusion MRI with self-supervised learning,”
arXiv [cs.LG], Nov. 2020.

[202] B. Avants et al., “Advanced normalization tools: V1.0,” Insight J., Jul. 2009.

[203] L. Chen et al., “An attention-based context-informed deep framework for infant brain
subcortical segmentation,” Neuroimage, vol. 269, no. 119931, p. 119931, Apr. 2023.

[204] Y. Sun et al., “Multi-site infant brain segmentation algorithms: The iSeg-2019 chal-
lenge,” IEEE Trans. Med. Imaging, vol. 40, no. 5, pp. 1363–1376, May 2021.

[205] A. Albi et al., “Image registration to compensate for EPI distortion in patients with
brain tumors: An evaluation of tract-specific effects,” J. Neuroimaging, vol. 28, no. 2,
pp. 173–182, Mar. 2018.

[206] Y. Ding et al., “Using deep convolutional neural networks for neonatal brain image
segmentation,” Front. Neurosci., vol. 14, p. 207, Mar. 2020.

[207] R. T. Shinohara et al., “Statistical normalization techniques for magnetic resonance
imaging,” NeuroImage Clin., vol. 6, pp. 9–19, Aug. 2014.

[208] Y. Assaf et al., “Composite hindered and restricted model of diffusion (CHARMED)
MR imaging of the human brain,” Neuroimage, vol. 27, no. 1, pp. 48–58, Aug. 2005.

[209] J. L. R. Andersson et al., “How to correct susceptibility distortions in spin-echo echo-
planar images: application to diffusion tensor imaging,” Neuroimage, vol. 20, no. 2, pp.
870–888, Oct. 2003.

[210] L. G. Matthews et al., “Longitudinal preterm cerebellar volume: Perinatal and neu-
rodevelopmental outcome associations,” Cerebellum, vol. 17, no. 5, pp. 610–627, Oct.
2018.



143

[211] D. K. Thompson et al., “Corpus callosum alterations in very preterm infants: perinatal
correlates and 2 year neurodevelopmental outcomes,” Neuroimage, vol. 59, no. 4, pp.
3571–3581, Feb. 2012.

[212] T. Guo et al., “Quantitative assessment of white matter injury in preterm neonates:
Association with outcomes,” Neurology, vol. 88, no. 7, pp. 614–622, Feb. 2017.

[213] F. T. de Bruïne et al., “Clinical implications of MR imaging findings in the white
matter in very preterm infants: a 2-year follow-up study,” Radiology, vol. 261, no. 3,
pp. 899–906, Dec. 2011.

[214] C. Arberet et al., “Isolated neonatal MRI punctate white matter lesions in very preterm
neonates and quality of life at school age,” J. Neonatal Perinatal Med., vol. 10, no. 3,
pp. 257–266, Jan. 2017.

[215] M. Jenkinson et al., “Improved optimization for the robust and accurate linear registra-
tion and motion correction of brain images,” Neuroimage, vol. 17, no. 2, pp. 825–841,
Oct. 2002.

[216] D. N. Greve et al., “Accurate and robust brain image alignment using boundary-based
registration,” Neuroimage, vol. 48, no. 1, pp. 63–72, Oct. 2009.

[217] I. O. Jelescu et al., “Challenges for biophysical modeling of microstructure,” J. Neu-
rosci. Methods, vol. 344, no. 108861, p. 108861, Oct. 2020.

[218] A. M. Heemskerk et al., “Acquisition guidelines and quality assessment tools for ana-
lyzing neonatal diffusion tensor MRI data,” AJNR Am. J. Neuroradiol., vol. 34, no. 8,
pp. 1496–1505, Aug. 2013.

[219] M. Bergamino et al., “Applying a free-water correction to diffusion imaging data un-
covers stress-related neural pathology in depression,” NeuroImage Clin., vol. 10, pp.
336–342, 2016.

[220] A. Karakuzu et al., “qMRLab: Quantitative MRI analysis, under one umbrella,” J.
Open Source Softw., vol. 5, no. 53, p. 2343, Sep. 2020.



144

APPENDIX A ADDITIONAL MATERIAL: COMPARATIVE STUDY OF
PRETERM- AND TERM-BORN INFANTS

Detailed Neonatal Participant and Scan Information

Table A.1: Preterm Infants Scanned at Preterm Age. This table lists preterm infants scanned
at their preterm age. The “Multi-scan” column indicates whether an additional scan at term-
equivalent age was performed (2) or not (1). The first 25 infants with a value of 2 in the
“Multi-scan” column also appear in the second table.

No. Subject Scan time Birth age Scan age Sex Weight Scanner Scans

1 sub-B008S1 2021-06-17 32W2D 33W2D F 1.70 GE 2
2 sub-B009S1 2021-10-04 29W6D 35W0D F 1.80 GE 2
3 sub-B010S1 2021-10-06 32W5D 33W6D F 2.00 GE 2
4 sub-B012S1 2021-11-01 33W5D 34W5D M 2.50 GE 2
5 sub-B013S1 2021-11-01 33W5D 34W5D M 1.99 GE 2
6 sub-B015S1 2021-11-09 30W1D 33W0D M 2.10 GE 2
7 sub-B016S1 2021-11-23 32W0D 32W6D F 1.36 GE 2
8 sub-B017S1 2021-11-26 32W0D 33W2D F 1.38 GE 2
9 sub-B018S1 2021-12-09 29W6D 33W0D F 1.29 GE 2
10 sub-B019S1 2021-12-09 34W6D 36W1D F 1.70 GE 2
11 sub-B023S1 2022-04-28 32W0D 33W3D M 1.70 GE 2
12 sub-B024S1 2022-05-05 32W0D 34W3D M 2.35 GE 2
13 sub-B029S1 2023-03-07 34W1D 35W2D F 1.00 GE 2
14 sub-B030S1 2023-03-09 31W2D 33W6D F 1.00 GE 2
15 sub-B031S1 2023-03-13 29W0D 31W3D M 1.40 GE 2
16 sub-B032S1 2023-04-04 33W3D 34W4D M 1.14 GE 2
17 sub-B035S1 2023-06-08 31W4D 33W1D M 2.00 SIEMENS 2
18 sub-B059S1 2024-01-29 27W0D 32W3D F 1.79 SIEMENS 2
19 sub-B065S1 2024-03-11 33W6D 35W3D F 1.30 SIEMENS 2
20 sub-B071S1 2024-05-22 30W4D 31W6D M 1.65 SIEMENS 2
21 sub-B072S1 2024-06-04 32W6D 33W5D M 2.28 SIEMENS 2
22 sub-B073S1 2024-06-04 32W6D 33W5D M 2.28 SIEMENS 2
23 sub-B084S1 2024-08-27 34W2D 36W2D M 2.20 SIEMENS 2
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Continued A.1

No. Subject Scan time Birth age Scan age Sex Weight Scanner Scans

24 sub-B085S1 2024-09-17 34W5D 36W4D M 2.30 SIEMENS 2
25 sub-B086S1 2024-09-18 34W5D 36W5D M 2.24 SIEMENS 2
26 sub-B021S1 2022-02-10 33W1D 34W3D F 2.02 GE 1
27 sub-B025S1 2022-05-05 31W6D 32W5D M 1.70 GE 1
28 sub-B033S1 2023-04-06 33W3D 34W6D M 2.10 GE 1
29 sub-B036S1 2023-06-15 30W6D 32W6D M 1.70 SIEMENS 1
30 sub-B037S1 2023-06-20 30W0D 31W0D F 1.00 SIEMENS 1
31 sub-B049S1 2023-09-14 35W4D 36W5D M 1.85 SIEMENS 1
32 sub-B062S1 2024-02-19 32W3D 34W0D F 2.00 SIEMENS 1
33 sub-B067S1 2024-04-25 31W6D 33W6D F 1.50 SIEMENS 1
34 sub-B082S1 2024-08-02 32W2D 33W3D M 1.80 SIEMENS 1
35 sub-B083S1 2024-08-02 32W2D 33W3D M 1.70 SIEMENS 1
36 sub-B095S1 2025-01-06 31W4D 33W1D M 1.50 SIEMENS 1

Table A.2: Follow-Up Term-Equivalent Age Scans of Preterm Infants. This table provides
the second scans for preterm infants who were rescanned at term-equivalent age. Only infants
who had “2” in the “Multi-scan” column of the first table are included here.

No. Subject Scan Time Birth age Scan age Sex Weight Scanner Scans

1 sub-B008S2 2021-07-29 32W2D 39W2D F 3.00 GE 2
2 sub-B009S2 2021-10-21 29W6D 37W3D F 2.50 GE 2
3 sub-B010S2 2021-11-25 32W5D 41W0D F 3.30 GE 2
4 sub-B012S2 2021-12-14 33W5D 40W6D M 3.80 GE 2
5 sub-B013S2 2021-12-14 33W5D 40W6D M 3.82 GE 2
6 sub-B015S2 2021-12-23 30W1D 39W2D M 3.60 GE 2
7 sub-B016S2 2022-01-20 32W0D 41W1D F 3.10 GE 2
8 sub-B017S2 2022-01-14 32W0D 40W2D F 2.80 GE 2
9 sub-B018S2 2022-01-24 29W6D 39W4D F 3.60 GE 2
10 sub-B019S2 2022-01-13 34W6D 41W1D F 3.00 GE 2
11 sub-B023S2 2022-06-09 32W0D 39W3D M 2.70 GE 2
12 sub-B024S2 2022-06-09 32W0D 39W3D M 2.70 GE 2
13 sub-B029S2 2023-04-18 34W1D 41W2D F 2.40 GE 2
14 sub-B030S2 2023-04-28 31W2D 41W0D F 3.40 GE 2
15 sub-B031S2 2023-04-27 29W0D 37W6D M 2.70 GE 2
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Continued A.2

No. Subject Scan Time Birth age Scan age Sex Weight Scanner Scans

16 sub-B032S2 2023-06-28 33W3D 46W5D M 3.40 SIEMENS 2
17 sub-B035S2 2023-07-27 31W4D 40W1D M 3.60 SIEMENS 2
18 sub-B059S2 2024-04-03 27W0D 41W5D F 3.60 SIEMENS 2
19 sub-B065S2 2024-04-15 33W6D 40W3D F 2.10 SIEMENS 2
20 sub-B071S2 2024-07-22 30W4D 40W4D M 4.00 SIEMENS 2
21 sub-B072S2 2024-07-23 32W6D 40W5D M 4.00 SIEMENS 2
22 sub-B073S2 2024-07-23 32W6D 40W5D M 3.00 SIEMENS 2
23 sub-B084S2 2024-08-27 34W2D 36W2D M 2.20 SIEMENS 2
24 sub-B085S2 2024-10-24 34W5D 41W6D M 4.00 SIEMENS 2
25 sub-B086S2 2024-10-24 34W5D 41W6D M 3.80 SIEMENS 2
26 sub-B049S2 2023-09-25 35W4D 38W2D F 2.50 SIEMENS 1
27 sub-B063S1 2024-03-05 34W4D 40W3D M 3.20 SIEMENS 1
28 sub-B069S1 2024-05-17 31W0D 40W4D M 3.00 SIEMENS 1
29 sub-B070S1 2024-05-17 31W0D 40W4D F 2.73 SIEMENS 1
30 sub-B076S1 2024-07-02 35W5D 38W5D M 3.00 SIEMENS 1
31 sub-B077S1 2024-07-09 34W0D 39W0D M 2.00 SIEMENS 1
32 sub-B081S1 2024-08-02 27W5D 36W1D M 2.70 SIEMENS 1
33 sub-B087S1 2024-10-16 33W5D 38W6D M 3.50 SIEMENS 1
34 sub-B090S1 2024-11-08 29W3D 38W6D F 2.90 SIEMENS 1
35 sub-B091S1 2024-11-08 29W3D 38W6D F 3.30 SIEMENS 1

Table A.3: Term Control Infant Scans. This table displays the full-term control infants.
Each entry has only one scan, indicated by “1” in the “Multi-scan” column, as no additional
follow-up scans were performed.

No. Subject Scan Time Birth age Scan age Sex Weight Scanner Scans

1 sub-B007S1 2021-06-23 39W4D 39W6D F 1.73 GE 1
2 sub-B011S1 2021-10-28 39W1D 39W3D F 3.10 GE 1
3 sub-B026S1 2022-09-08 38W2D 38W4D M 3.28 GE 1
4 sub-B027S1 2022-09-15 40W6D 41W6D M 3.30 GE 1
5 sub-B028S1 2022-09-22 37W5D 37W6D M 2.97 GE 1
6 sub-B034S1 2023-05-11 39W0D 40W0D F 3.10 SIEMENS 1
7 sub-B038S1 2023-07-11 38W5D 41W4D M 3.70 SIEMENS 1
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Continued A.3

No. Subject Scan Time Birth age Scan age Sex Weight Scanner Scans

8 sub-B039S1 2023-07-18 39W1D 40W6D M 4.70 SIEMENS 1
9 sub-B040S1 2023-07-28 39W0D 40W2D M 3.40 SIEMENS 1
10 sub-B042S1 2023-08-15 41W0D 42W2D F 3.17 SIEMENS 1
11 sub-B045S1 2023-09-05 40W4D 41W5D M 3.70 SIEMENS 1
12 sub-B047S1 2023-09-12 39W2D 40W2D F 3.10 SIEMENS 1
13 sub-B052S1 2023-10-30 40W1D 42W4D F 3.40 SIEMENS 1
14 sub-B053S1 2023-11-01 39W0D 40W6D M 3.00 SIEMENS 1
15 sub-B054S1 2023-11-06 38W2D 40W5D M 3.30 SIEMENS 1
16 sub-B055S1 2023-11-10 38W4D 40W6D M 2.80 SIEMENS 1
17 sub-B057S1 2023-12-27 40W1D 44W1D M 3.60 SIEMENS 1
18 sub-B058S1 2024-01-24 39W2D 40W4D M 3.45 SIEMENS 1
19 sub-B061S1 2024-02-14 40W0D 40W6D F 3.70 SIEMENS 1
20 sub-B066S1 2024-03-21 39W0D 40W3D M 2.70 SIEMENS 1
21 sub-B068S1 2024-05-15 39W5D 41W5D M 3.80 SIEMENS 1
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Figure A.1 PMA distributions at PT-34W, PT-TEA, and TC-40W. Box-and-jitter plots of
postmenstrual age (PMA) at scan for the three cohorts. Boxes denote median and IQR;
dots are individuals; squares indicate group means with 95% CIs. At TEA, PMA did not
differ significantly between PT-TEA and TC-40W (Welch’s t p = 0.103; mean difference 0.72
weeks, 95% CI [−0.15, 1.59]) and met TOST equivalence under ±1.5 weeks (max one-sided
p = 0.0395). All TEA contrasts in the main analyses include PMA as a covariate (ANCOVA
with HC3).
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Region of Interest List

Table A.4 List of the 44 merged regions of interest used in this study, obtained by combining
left and right hemisphere labels from the 87-label neonatal atlas. IDs correspond to the
merged index used throughout the chapter; background labels are excluded.

44 ROIs (IDs 1–22) 44 ROIs (IDs 23–44)

1 Hippocampus 23 Subthalamic nucleus
2 Amygdala 24 Lentiform nucleus
3 Anterior temporal lobe, medial part GM 25 Corpus callosum
4 Anterior temporal lobe, lateral part GM 26 Lateral ventricle
5 Gyri parahippocampalis et ambiens anterior GM 27 Anterior temporal lobe, medial part WM
6 Superior temporal gyrus, middle part GM 28 Anterior temporal lobe, lateral part WM
7 Med/Inf temporal gyri anterior part GM 29 Gyri para. et ambiens anterior part WM
8 Fusiform gyrus anterior part GM 30 Superior temporal gyrus, middle part WM
9 Cerebellum 31 Med/Inf temporal gyri anterior part WM
10 Brainstem 32 Fusiform gyrus anterior part WM
11 Insula GM 33 Insula WM
12 Occipital lobe GM 34 Occipital lobe WM
13 Gyri para. et ambiens posterior GM 35 Gyri para. et ambiens posterior WM
14 Fusiform gyrus posterior part GM 36 Fusiform gyrus posterior part WM
15 Med/Inf temporal gyri posterior part GM 37 Med/Inf temporal gyri posterior part WM
16 Superior temporal gyrus, posterior GM 38 Superior temporal gyrus, posterior WM
17 Cingulate gyrus anterior part GM 39 Cingulate gyrus anterior part WM
18 Cingulate gyrus posterior part GM 40 Cingulate gyrus posterior part WM
19 Frontal lobe GM 41 Frontal lobe WM
20 Parietal lobe GM 42 Parietal lobe WM
21 Caudate nucleus 43 CSF
22 Thalamus (T2 high) 44 Thalamus (T2 low)

Table A.5 System-level regions of interest (ROIs) for microstructural analysis. The complete
set includes 15 consolidated ROIs; for the main analyses (14 ROIs), the Ventricles–CSF
region was excluded to focus on brain parenchyma. Abbreviations: GM, gray matter; WM,
white matter; Hippo-Amyg, hippocampus-amygdala complex; CC, corpus callosum; CSF,
cerebrospinal fluid.

15 ROIs (IDs 1–8 long & short names) 15 ROIs (IDs 9–15 long & short names

1 Frontal Lobe GM Frontal GM 9 Hippocampus–Amygdala Complex Hippo-Amyg
2 Temporal Lobe GM Temporal GM 10 Basal Ganglia Basal Ganglia
3 Parietal Lobe GM Parietal GM 11 Thalamic Complex Thalamic
4 Occipital Lobe GM Occipital GM 12 Cerebellum Cerebellum
5 Frontal Lobe WM Frontal WM 13 Brainstem Brainstem
6 Temporal Lobe WM Temporal WM 14 Corpus Callosum CC
7 Parietal Lobe WM Parietal WM 15 Ventricles–CSF CSF
8 Occipital Lobe WM Occipital WM
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Figure A.2 Whole-brain overview (14 ROIs): microstructural maturation summarized by
Hedges’ g (volume-adjusted). Panels and conventions as in Fig. 6.2. Models additionally
include centered ROI volume as a covariate; dots reflect p−values from the volume-adjusted
models and BH–FDR control within panel and family (across 14 rows, q < 0.05). Color scale
and clipping as in Fig. 6.2.
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Figure A.3 DBM versus DTI sensitivity to catch-up and residual gaps (with 95% CIs, CSF
included). (a) Bars show the proportion of FDR-significant ROI–metric pairs within family
(DBM or DTI) for the two contrasts: Catch-up (PT-34W → PT-TEA) and Residual at
TEA (PT-TEA versus TC-40W). Numbers above bars indicate significant/total pairs and
the percentage. Error bars are 95% CIs from ROI-cluster bootstrap (2,000 resamples). (b)
Bars show the median absolute Hedges’ g across ROI–metric pairs with 95% bootstrap CIs;
catch-up uses gav for PT-TEA-PT-34W, TEA residual uses g for TC-40W versus PT-TEA.
BH–FDR is applied within family across all ROIs×metrics (8 lobar + 6 subcortical/midline);
longitudinal models use mixed-effects without PMA due to collinearity with timepoint.
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Table A.6 PMA-associated growth rates in absolute ROI volumes within preterm infants.
Slopes (% change per week) come from a mixed-effects model on log-volume, y = log V ∼
PMAc + (1|subj). p: p-value; q: BH–FDR across the 14 ROIs.

ROI Slope (%/week) 95% CI (%/week) p(PMA) q(PMA) Sig. (q<.05)

Lobar GM + WM
Frontal GM 13.9 11.7–16.1 2.48e−39 1.28e−38 Yes
Frontal WM 5.6 4.0– 7.2 2.13e−12 7.47e−12 Yes
Temporal GM 13.3 8.0–18.9 2.74e−07 4.80e−07 Yes
Temporal WM 6.0 3.4– 8.7 4.77e−06 6.67e−06 Yes
Parietal GM 14.0 13.0–14.9 8.96e−201 1.25e−199 Yes
Parietal WM 5.3 3.4– 7.3 5.18e−08 1.04e−07 Yes
Occipital GM 9.3 6.3–12.3 3.42e−10 7.98e−10 Yes
Occipital WM -0.1 -3.0– 2.8 0.941 0.941 No

Subcortical + midline
Thalamic 8.4 5.0–11.9 5.89e−07 9.16e−07 Yes
Basal Ganglia 7.4 5.2– 9.5 4.04e−12 1.13e−11 Yes
Hippo–Amyg 10.1 1.7–19.1 0.0169 0.0216 Yes
CC 5.3 -4.5–16.2 0.300 0.323 No
Brainstem 9.3 0.9–18.4 0.029 0.034 Yes
Cerebellum 14.8 12.4–17.2 2.75e−39 1.28e−38 Yes

Table A.7 PMA-associated growth rates in relative ROI volumes (proportion of ICV)
within preterm infants. Slopes come from a mixed-effects model on log-proportion, y =
log(V/ICV) ∼ PMAc + (1|subj), and can be read as % change per week relative to whole-
brain growth. p is the coefficient p-value; q is BH–FDR across the 14 ROIs in this table.

ROI Slope (%/week) 95% CI (%/week) p(PMA) q(PMA) Sig. (q<.05)

Lobar GM + WM
Frontal GM 4.69 4.15– 5.24 1.53e−67 2.14e−66 Yes
Frontal WM -2.96 -3.56– -2.36 7.94e−22 3.71e−21 Yes
Temporal GM 4.21 0.85– 7.68 1.36e−02 2.12e−02 Yes
Temporal WM -2.50 -3.47– -1.53 5.41e−07 1.08e−06 Yes
Parietal GM 4.57 3.53– 5.63 2.27e−18 7.94e−18 Yes
Parietal WM -3.15 -3.62– -2.68 3.96e−38 2.77e−37 Yes
Occipital GM 0.33 -2.21– 2.93 0.803 0.803 No
Occipital WM -8.21 -10.37– -6.00 1.81e−12 5.06e−12 Yes

Subcortical + midline
Thalamic -0.29 -2.00– 1.45 0.744 0.803 No
Basal Ganglia -1.25 -1.87– -0.62 1.05e−04 1.83e−04 Yes
Hippo–Amyg 1.97 -5.79–10.37 0.629 0.800 No
CC -2.54 -11.48– 7.31 0.601 0.800 No
Brainstem 1.27 -6.56– 9.75 0.759 0.803 No
Cerebellum 5.32 3.76– 6.90 9.82e−12 2.29e−11 Yes
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Figure A.4 Regional volumes: catch-up and residual gap with PMA adjustment (absolute
and proportional to ICV). Top row: lobar cortical GM with adjacent WM. Bottom row:
subcortical nuclei and midline structures. Columns: (a,e) Absolute volumes—within-preterm
catch-up (PT-34W→ PT-TEA). (b,f) Absolute volumes—residual gap at TEA (PT-TEA vs.
TC-40W). (c,g) Proportional volumes V/ICV—within-preterm catch-up. (d,h) Proportional
volumes V/ICV—residual gap at TEA. Effect size shows in color (Hedges’ gav for PT-34W→
PT-TEA and g for TC-40W versus PT-TEA), red/blue = higher/lower in the second group
of each contrast, gray dots = significant after BH–FDR (q < 0.05) within each subpanel
across its ROIs.
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APPENDIX B ADDITIONAL MATERIAL: STUDY OF NEONATAL
PUNCTATE WHITE MATTER LESIONS

PWML infant list

Table B.1 PWML infants and their paired healthy controls (optic radiation). Rows are sorted
by lesion subtype (wet first), ages are in weeks (GA). Subtypes: wet = fast-water elevated
by DBM; dry = no fast-water elevation.

PWML infants Paired control infants

No. Subject Session Age Birth age Type Subject Session Age Birth age

1 00723XX14 211900 31.43 30.14 wet 00284BN13 90801 32.29 30.71
2 00135BN12 44704 35.00 34.14 wet 00563XX11 153900 35.29 34.71
3 00571AN11 159101 35.29 34.86 wet 00563XX11 153900 35.29 34.71
4 00418BN14 125300 36.86 36.00 wet 00281AN10 90400 36.86 36.14
5 00853XX12 7330 42.14 41.29 wet 00117XX10 38200 42.14 41.57
6 00255XX08 84400 42.29 42.14 wet 00433XX13 132000 42.43 42.14
7 00418BN14 130300 39.57 36.00 wet 00771XX13 17710 39.71 35.57
8 00103XX04 35300 40.14 40.00 wet 00067XX10 20200 40.14 40.00
9 00723XX14 211900 31.43 30.14 wet 00284BN13 90801 32.29 30.71
10 00231XX09 77701 37.00 36.29 wet 00132XX09 44400 37.00 36.57
11 00723XX14 224100 39.29 30.14 dry 00830XX14 30710 39.57 30.43
12 00547XX20 157300 39.00 38.71 dry 00313XX08 100000 39.14 38.86
13 00695XX20 202600 39.57 36.86 dry 00418AN14 130200 39.57 36.00
14 00116XX09 38001 39.43 39.29 dry 00080XX07 30300 39.43 39.29
15 00301XX04 113001 40.00 28.71 dry 00121XX06 41700 40.14 28.14
16 00231XX09 77701 37.00 36.29 dry 00132XX09 44400 37.00 36.57
17 00517XX14 145000 36.29 35.14 dry 00492AN15 140900 36.57 35.14
18 00688XX21 199500 37.43 37.00 dry 00308XX11 98900 37.43 37.29
19 00688XX21 205500 41.57 37.00 dry 00332XX11 105700 41.57 39.00
20 00395XX17 121300 35.71 31.29 dry 00361XX07 111700 35.57 32.29

Figures for PWML examples
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Figure B.1 Wet-type punctate white-matter lesion: multi-parametric DBM assessment (sub-
ject ses-44704). (a) Axial T2-weighted reference image with the PWML highlighted (red
arrow). (b) Axial diffusivity (ADDTI) and (c) radial diffusivity (RDDTI) from the conven-
tional DTI model illustrate reduced axial and elevated radial diffusion within the lesion. (d)
DBM isotropic-spectrum width, σDBM, demonstrates local broadening of the diffusion spec-
trum. (e) Spectrum skewness and (f) kurtosis maps further characterise the distribution’s
asymmetry and peakedness, respectively. (g) Dominant diffusivity ddomain pinpoints the most
probable isotropic diffusivity in each voxel, while (h) isotropic volume fraction fdomain esti-
mates the relative contribution of free-water–like diffusion. (i) Anisotropic fraction faniso.
maps the proportion of directionally constrained diffusion. Together, these parametric maps
reveal the combined effects of vasogenic oedema and microstructural disruption that define
the wet-type PWML phenotype.
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Figure B.2 ry-type punctate white-matter lesion: multi-parametric DBM assessment (subject
ses-38001). (a) Axial T2-weighted reference slice with the optic-radiation PWML indicated
(red arrow). (b) Axial diffusivity (ADDTI) and (c) radial diffusivity (RDDTI) show a mild
decrease in AD and RD relative to the contralateral tract, consistent with restricted but
non-cystic tissue change. (d) DBM isotropic-spectrum width, σDBM, reveals non-apparent
broadening of the diffusion spectrum, while (e) spectrum skewness and (f) kurtosis maps in-
dicate subtle asymmetry and flattening—markers of heterogenous, cell-rich microstructure.
(g) Dominant diffusivity ddomain shifts toward lower values, reflecting a global leftward dis-
placement of the spectrum. Crucially, (h) isotropic volume fraction fdomain remains low,
indicating minimal free-water content, and (i) anisotropic fraction faniso. is no apparent re-
duction, suggesting preserved axonal organization. Together, these parametric maps depict a
lesion dominated by chronic cellular remodeling with limited vasogenic oedema, the hallmark
of the dry-type PWML phenotype.
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APPENDIX C ADDITIONAL FIGURES FOR SEGMENTATION STUDY

Per-class Dice coefficients of dHCP and CHUSJ data test
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Figure C.1 Per-class Dice coefficients for 14 aggregated regions – internal dHCP test set.
Horizontal bars are sorted in descending order of the T2-weighted Dice. Green and red
dotted lines mark Dice = 0.90 and Dice = 0.80, respectively. All T2w scores exceed 0.90;
the diffusion model also exceeds 0.90 in 10/14 regions and remains ≥ 0.87 elsewhere (corpus
callosum). The thalamus is the best-segmented structure (T2w 0.99, dMRI 0.98); the corpus
callosum is the most challenging (T2w 0.90, dMRI 0.87).

Fro
ntal

GM

Te
m

pora
l GM

Par
iet

al
GM

Occ
ip

ita
l GM

Fro
ntal

W
M

Te
m

pora
l W

M

Par
iet

al
W

M

Occ
ip

ita
l W

M

Hip
po-A

m
yg

Bas
al

Gan
glia

Thala
m

us

Cere
bell

um

Bra
in

ste
m

Corp
us Call

o.

Ven
tri

cle
s-C

SF
0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e
C

oe
ffi

ci
en

t

T2w-baseline
dMRI-proposed

Figure C.2 Per-class Dice coefficients for the same 14 regions – external CHUSJ test set.
Bars appear in the same anatomical order as Fig. 5.1 to facilitate comparison. The vendor
shift lowers accuracy for both models, pushing several T2w classes below the 0.90 threshold.
By contrast, the diffusion-based model retains≥ 0.80 Dice in every region and surpasses the
structural baseline in hippocampus + amygdala, brain-stem, cerebellum, deep GM and CSF.
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